User Experience of 7 Mobile Electroencephalography Devices: Comparative Study.
Ontology highlight
ABSTRACT: BACKGROUND:Registration of brain activity has become increasingly popular and offers a way to identify the mental state of the user, prevent inappropriate workload, and control other devices by means of brain-computer interfaces. However, electroencephalography (EEG) is often related to user acceptance issues regarding the measuring technique. Meanwhile, emerging mobile EEG technology offers the possibility of gel-free signal acquisition and wireless signal transmission. Nonetheless, user experience research about the new devices is lacking. OBJECTIVE:This study aimed to evaluate user experience aspects of emerging mobile EEG devices and, in particular, to investigate wearing comfort and issues related to emotional design. METHODS:We considered 7 mobile EEG devices and compared them for their wearing comfort, type of electrodes, visual appearance, and subjects' preference for daily use. A total of 24 subjects participated in our study and tested every device independently of the others. The devices were selected in a randomized order and worn on consecutive day sessions of 60-min duration. At the end of each session, subjects rated the devices by means of questionnaires. RESULTS:Results indicated a highly significant change in maximal possible wearing duration among the EEG devices (χ26=40.2, n=24; P<.001). Regarding the visual perception of devices' headset design, results indicated a significant change in the subjects' ratings (χ26=78.7, n=24; P<.001). Results of the subjects' ratings regarding the practicability of the devices indicated highly significant differences among the EEG devices (χ26=83.2, n=24; P<.001). Ranking order and posthoc tests offered more insight and indicated that pin electrodes had the lowest wearing comfort, in particular, when coupled with a rigid, heavy headset. Finally, multiple linear regression for each device separately revealed that users were not willing to accept less comfort for a more attractive headset design. CONCLUSIONS:The study offers a differentiated look at emerging mobile and gel-free EEG technology and the relation between user experience aspects and device preference. Our research could be seen as a precondition for the development of usable applications with wearables and contributes to consumer health informatics and health-enabling technologies. Furthermore, our results provided guidance for the technological development direction of new EEG devices related to the aspects of emotional design.
SUBMITTER: Raduntz T
PROVIDER: S-EPMC6751099 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA