Unknown

Dataset Information

0

Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders.


ABSTRACT: Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.

SUBMITTER: Vargas-Lowman A 

PROVIDER: S-EPMC6754612 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders.

Vargas-Lowman Aidamalia A   Armisen David D   Burguez Floriano Carla Fernanda CF   da Rocha Silva Cordeiro Isabelle I   Viala Séverine S   Bouchet Mathilde M   Bernard Marie M   Le Bouquin Augustin A   Santos M Emilia ME   Berlioz-Barbier Alexandra A   Salvador Arnaud A   Figueiredo Moreira Felipe Ferraz FF   Bonneton François F   Khila Abderrahman A  

Proceedings of the National Academy of Sciences of the United States of America 20190904 38


Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversif  ...[more]

Similar Datasets

| S-EPMC4522788 | biostudies-literature
| S-EPMC4429320 | biostudies-literature
| S-EPMC2964456 | biostudies-literature
| S-EPMC6405465 | biostudies-literature
| S-EPMC4568302 | biostudies-literature
| S-EPMC7565411 | biostudies-literature
| S-EPMC5150985 | biostudies-literature
| S-EPMC1137459 | biostudies-other
| S-EPMC5382949 | biostudies-literature
| S-EPMC7554973 | biostudies-literature