ABSTRACT: Capsular polysaccharides (CPS) are crucial virulence factors of Streptococcus pneumoniae The previously unknown CPS structures of the pneumococcal serogroup 16 (serotypes 16F and 16A) were thoroughly elucidated by nuclear magnetic resonance (NMR) spectroscopy and verified by chemical analysis. The following repeat unit structures were determined: 16F, -3)-?-l-Rhap-[4-P-1-Gro]-(1-3)-?-d-Glcp-[(6-P-1)-Gro]-(1-3)-?-l-Rhap-[2-OAc]-(1-4)-?-d-Glcp-(1-; 16A, -3)-?-d-Galf-[2-OAc (70%)]-(1-3)-?-l-Rhap-(1-2)-?-l-Rhap-(1-3)-?-d-Galp-[(6-P-1)-Gro]-(1-3)-?-d-Galp-(1-4)-?-d-Glcp-(1- (OAc, O-acetyl substitution; P-1-Gro, glycerol-1-phosphate substitution) A further analysis of CPS biosynthesis of serotypes 16F and 16A, in conjunction with published cps gene bioinformatics analysis and structures of related serotypes, revealed presumable specific function of glycosyltransferase, acetyltransferase, phosphotransferase, and polymerase. The functions of glycosyltransferases WcxN and WcxT were proposed for the first time, and they were assigned to catalyze linkage of ?-l-Rhap-(1-3)-?-d-Glcp and ?-l-Rhap-(1-2)-?-l-Rhap, respectively. Furthermore, since serotype 16F was genetically close to serogroup 28, cross-reactions between serogroup 16 and serogroup 28 were studied using diagnostic antisera, which provided further understanding of antigenic properties of CPS and diagnostic antisera. Interestingly, serotype 16F cross-reacted with factor antisera 28b and 11c. Meanwhile, serotype 16A cross-reacted with factor antiserum 11c.IMPORTANCE The vaccine pressure against Streptococcus pneumoniae could result in a change of prevalence in carriage and invasive serotypes. As such, it is necessary to monitor the distribution to achieve successful vaccination of the population, and similarly, it is important to increase the knowledge of even the currently less prevalent serotypes. The CPS are vital for the virulence of the pathogen, and antigenic properties of CPS are based on the structure. Consequently, a better understanding of the structure, biosynthesis, and serology of the capsular polysaccharides can be of great importance toward developing future diagnostic tools and vaccines.