Unknown

Dataset Information

0

Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery.


ABSTRACT: Background:Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). Results:The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting?~?98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (?-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. Conclusions:We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.

SUBMITTER: Mondo SJ 

PROVIDER: S-EPMC6757388 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome expansion by allopolyploidization in the fungal strain <i>Coniochaeta</i> 2T2.1 and its exceptional lignocellulolytic machinery.

Mondo Stephen J SJ   Jiménez Diego Javier DJ   Hector Ronald E RE   Lipzen Anna A   Yan Mi M   LaButti Kurt K   Barry Kerrie K   van Elsas Jan Dirk JD   Grigoriev Igor V IV   Nichols Nancy N NN  

Biotechnology for biofuels 20190923


<h4>Background</h4>Particular species of the genus <i>Coniochaeta</i> (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially <i>Coniochaeta ligniaria</i>. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a <i>Coniochaeta</i> species (strain 2T2.1).<h4>Results</h  ...[more]

Similar Datasets

| S-EPMC6843371 | biostudies-literature
| S-EPMC5270693 | biostudies-literature
| S-EPMC4061905 | biostudies-literature
| S-EPMC5347227 | biostudies-literature
| S-EPMC5514509 | biostudies-literature
| S-EPMC5814504 | biostudies-literature
| S-EPMC5241404 | biostudies-literature
| S-EPMC6318365 | biostudies-literature
| S-EPMC8882562 | biostudies-literature
| S-EPMC8445621 | biostudies-literature