Akt Phosphorylates NQO1 and Triggers its Degradation, Abolishing Its Antioxidative Activities in Parkinson's Disease.
Ontology highlight
ABSTRACT: The oxidative metabolism of dopamine and consequent oxidative stress are implicated in dopaminergic neuronal loss, mediating the pathogenesis of Parkinson's disease (PD). The inducible detoxifying antioxidative enzyme Quinone oxidoreductase (NQO1) (NAD(P)H: quinone oxidoreductase 1), neuroprotective to counteract reactive oxidative species, is most prominent in the active stage of the disease and virtually absent at the end stage of the disease. However, the molecular mechanism dictating NQO1 expression oscillation remains unclear. Here we show that Akt phosphorylates NQO1 at T128 residues and triggers its polyubiquitination and proteasomal degradation, abrogating its antioxidative effects in PD. Akt binds NQO1 in a phosphorylation-dependent manner. Interestingly, Akt, but not PINK1, provokes NQO1 phosphorylation and polyubiquitination with Parkin as an E3 ligase. Unphosphorylatable NQO1 mutant displays more robust neuroprotective activity than WT NQO1 in suppressing reactive oxidative species and against MPTP-induced dopaminergic cell death, rescuing the motor disorders in both ?-synuclein transgenic transgenic male and female mice elicited by the neurotoxin. Thus, our findings demonstrate that blockade of Akt-mediated NQO1 degradation may ameliorate PD pathogenesis.SIGNIFICANCE STATEMENT Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with the imbalance of oxidative metabolism of dopamine. Quinone oxidoreductase (NQO1), a potent antioxidant system, its expression levels are prominently increased in the early and intermediate stages of PD and disappeared in the end-stage PD. The molecular modification behavior of NQO1 after it is upregulated by oxidative stress in the early stage of PD, however, remains unclear. This study shows that Akt binds and phosphorylates NQO1 at T128 residue and promotes its ubiquitination and degradation, and Parkin acts as an E3 ligase in this process, which affects the antioxidant capacity of NQO1. This finding provides a novel molecular mechanism for NQO1 oscillation in PD pathogenesis.
SUBMITTER: Luo S
PROVIDER: S-EPMC6759025 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA