A snapshot of drug background levels on surfaces in a forensic laboratory.
Ontology highlight
ABSTRACT: While background studies have been commonplace in many occupational fields for a long time, attempts to understand the chemical background in forensics labs has been largely understudied. Such studies can help define the efficiency of cleaning procedures and the integrity of collected data, which is becoming increasingly important due to improving sensitivity of instrumentation and the prevalence with which potent drugs of abuse, such as the opioids, are being seen. The results from this study provide a snapshot of the drug background levels on surfaces in a laboratory system comprised of a central laboratory and two satellite laboratories. Samples were collected from work surfaces by swiping with meta-aramid wipes, and extracted for analysis by LC/MS/MS, for quantitation, and TD-DART-MS, for non-targeted screening. Surfaces were sampled from within the drug unit (where drug evidence is processed) and the evidence receiving unit (where drug cases are handled) in all laboratories as well as the report writing area, the toxicology unit and the crime scene unit in the central laboratory. Results showed that the background was restricted primarily to the benches, balances, and instrumentation within the drug unit - with approximately an order of magnitude higher concentrations observed on the balances, compared to the benches. Higher levels were also observed in analyst specific surfaces when compared to general use surfaces within the drug unit - which corresponded to where bulk evidence handling was completed. Background in the evidence receiving and report writing sections was minimal. Comparison of the main laboratory to the satellite laboratories showed similarities amongst frequently encountered drugs like cocaine, but noticeable differences in opioids which could be attributed to differences in the make-up of exhibits each laboratory receives. Understanding the background levels of drugs in a forensic laboratory environment is crucial to improving cleaning protocols, helping define detection limits for highly sensitive analyses, and providing additional results to the broader community that has been establishing background levels in other environments.
SUBMITTER: Sisco E
PROVIDER: S-EPMC6760002 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA