Optimum plant density for crowding stress tolerant processing sweet corn.
Ontology highlight
ABSTRACT: Globally, gains in sweet corn [Zea mays L.var. rugosa (or saccharata)] are a fraction of the yield advances made in field corn (Zea mays L.) in the last half-century. Grain yield improvement of field corn is associated with increased tolerance to higher plant densities (i.e., crowding stress). Processing sweet corn hybrids that tolerate crowding stress have been identified; however, such hybrids appear to be under-planted in the processing sweet corn. Using crowding stress tolerant (CST) hybrids, the objectives of this study were to: (1) identify optimum plant densities for a range of growing conditions; (2) quantify gaps in production between current and optimum plant densities; and (3) enumerate changes in yield and ear traits when shifting from current to optimum plant densities. Using a CST shrunken-2 (sh2) processing sweet corn hybrid, on-farm plant density trials were conducted in thirty fields across the states of Illinois, Minnesota and Wisconsin, from 2013 to 2017 in order to capture a wide variety of growing conditions. Linear mixed-effects models were used to identify the optimum plant density corresponding to maximum ear mass (Mt ha-1), case production (cases ha-1), and profitability to the processor ($ ha-1). Kernel moisture, indicative of plant development, was unaffected by plant density. Ear traits, such as ear number and ear mass per plant, average ear length, and filled ear length declined linearly with increasing plant density. Nonetheless, there was a large economic benefit to the grower and processor by shifting to higher plant densities in most environments. This research shows that increasing plant densities of CST hybrids from current (58,475 plants ha-1) to optimum (73,075 plants ha-1) could improve processing sweet corn green ear yield and processor profitability on average of 1.13 Mt ha-1 and $525 ha-1, respectively.
SUBMITTER: Dhaliwal DS
PROVIDER: S-EPMC6762085 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA