Unknown

Dataset Information

0

Active Time-Restricted Feeding Improved Sleep-Wake Cycle in db/db Mice.


ABSTRACT: People with diabetes are more likely to experience sleep disturbance than those without. Sleep disturbance can cause daytime sleepiness in diabetic patients, which may impair their daytime performance or even lead to workplace injuries. Therefore, restoring the normal sleep-wake cycle is critical for diabetic patients who experience daytime sleepiness. Previous data on a diabetic mouse model, the db/db mice, have demonstrated that the total sleep time and sleep fragmentation are increased and the daily rhythm of the sleep-wake cycle is attenuated. Accumulating evidence has shown that active time-restricted feeding (ATRF), in which the timing of food availability is restricted to the active-phase, is beneficial to metabolic health. However, it is unknown whether ATRF restores the normal sleep-wake cycle in diabetes. To test that, we used a non-invasive piezoelectric system to monitor the sleep-wake profile in the db/db mice with ad libitum feeding (ALF) as a baseline and then followed with ATRF. The results showed that at baseline, db/db mice exhibited abnormal sleep-wake patterns: the sleep time percent during the light-phase was decreased, while during the dark-phase it was increased with unusual cycling compared to control mice. In addition, the sleep bout length during both the light-phase and the full 24-h period was shortened in db/db mice. Analysis of the sleep-wake circadian rhythm showed that ATRF effectively restored the circadian but suppressed the ultradian oscillations of the sleep-wake cycle in the db/db mice. In conclusion, ATRF may serve as a novel strategy for treating diabetes-induced irregularity of the sleep-wake cycle.

SUBMITTER: Hou T 

PROVIDER: S-EPMC6763589 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Active Time-Restricted Feeding Improved Sleep-Wake Cycle in <i>db/db</i> Mice.

Hou Tianfei T   Wang Chanung C   Joshi Shreyas S   O'Hara Bruce F BF   Gong Ming C MC   Guo Zhenheng Z  

Frontiers in neuroscience 20190920


People with diabetes are more likely to experience sleep disturbance than those without. Sleep disturbance can cause daytime sleepiness in diabetic patients, which may impair their daytime performance or even lead to workplace injuries. Therefore, restoring the normal sleep-wake cycle is critical for diabetic patients who experience daytime sleepiness. Previous data on a diabetic mouse model, the <i>db/db</i> mice, have demonstrated that the total sleep time and sleep fragmentation are increased  ...[more]

Similar Datasets

| S-EPMC8453873 | biostudies-literature
| S-EPMC9440422 | biostudies-literature
| S-EPMC6769075 | biostudies-literature
| S-EPMC6735806 | biostudies-literature
| S-EPMC10651687 | biostudies-literature
| S-EPMC6919212 | biostudies-literature
| S-EPMC8237651 | biostudies-literature
| S-EPMC10902009 | biostudies-literature
| S-EPMC7053779 | biostudies-literature
| S-EPMC5363491 | biostudies-literature