Unknown

Dataset Information

0

Phenotypic Drug Screening for Dysferlinopathy Using Patient-Derived Induced Pluripotent Stem Cells.


ABSTRACT: Dysferlinopathy is a progressive muscle disorder that includes limb-girdle muscular dystrophy type 2B and Miyoshi myopathy (MM). It is caused by mutations in the dysferlin (DYSF) gene, whose function is to reseal the muscular membrane. Treatment with proteasome inhibitor MG-132 has been shown to increase misfolded dysferlin in fibroblasts, allowing them to recover their membrane resealing function. Here, we developed a screening system based on myocytes from MM patient-derived induced pluripotent stem cells. According to the screening, nocodazole was found to effectively increase the level of dysferlin in cells, which, in turn, enhanced membrane resealing following injury by laser irradiation. Moreover, the increase was due to microtubule disorganization and involved autophagy rather than the proteasome degradation pathway. These findings suggest that increasing the amount of misfolded dysferlin using small molecules could represent an effective future clinical treatment for dysferlinopathy. Stem Cells Translational Medicine 2019;8:1017-1029.

SUBMITTER: Kokubu Y 

PROVIDER: S-EPMC6766604 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phenotypic Drug Screening for Dysferlinopathy Using Patient-Derived Induced Pluripotent Stem Cells.

Kokubu Yuko Y   Nagino Tomoko T   Sasa Katsunori K   Oikawa Tatsuo T   Miyake Katsuya K   Kume Akiko A   Fukuda Mikiko M   Fuse Hiromitsu H   Tozawa Ryuichi R   Sakurai Hidetoshi H  

Stem cells translational medicine 20190628 10


Dysferlinopathy is a progressive muscle disorder that includes limb-girdle muscular dystrophy type 2B and Miyoshi myopathy (MM). It is caused by mutations in the dysferlin (DYSF) gene, whose function is to reseal the muscular membrane. Treatment with proteasome inhibitor MG-132 has been shown to increase misfolded dysferlin in fibroblasts, allowing them to recover their membrane resealing function. Here, we developed a screening system based on myocytes from MM patient-derived induced pluripoten  ...[more]

Similar Datasets

| S-EPMC8538546 | biostudies-literature
| S-EPMC7780813 | biostudies-literature
| S-EPMC4753163 | biostudies-literature
| S-EPMC3855862 | biostudies-literature
| S-EPMC5454868 | biostudies-literature
| S-EPMC3870148 | biostudies-literature
| S-EPMC4372437 | biostudies-literature
| S-EPMC7922555 | biostudies-literature
| S-EPMC10213114 | biostudies-literature
| S-EPMC7835337 | biostudies-literature