Project description:BackgroundThe soluble isoform of FcɛRI, the high-affinity IgE receptor (sFcεRI), is a protein of the IgE network with poorly defined functions.ObjectiveTo define cellular sources and signals that result in the production of human sFcεRI and study its in vivo functions.MethodsFcεRI-transfected human cell lines (MelJuso), human monocyte-derived dendritic cells (moDCs), and murine bone marrow-derived mast cells (MC) were stimulated by FcεRI cross-linking and release of sFcεRI was analyzed (ELISA, Western Blot). Lysosomal-associated membrane protein 1 degranulation assays and human basophil activation tests (BATs) were used to study IgE-dependent activation. Recombinant sFcεRI (rsFcεRI) was used to assess its role in murine models of anaphylaxis with WT (wild-type) and IgE-/- (IgE-deficient) mice.ResultsAntigen-specific cross-linking of IgE-loaded FcɛRI on MelJuso cells that express the trimeric or tetrameric receptor isoform induced the production of sFcεRI. Using MCs and moDCs, we confirmed that IgE/FcɛRI activation induces sFcɛRI release. We demonstrated that generation of sFcɛRI requires Src phosphorylation and endo/lysosomal acidification. In experimental mouse models, sFcɛRI diminishes the severity of IgE-mediated anaphylaxis. BATs confirmed that, comparable to the anti-IgE monoclonal antibody omalizumab, sFcɛRI is an inhibitor of the human innate IgE effector axis, implying that sFcɛRI and omalizumab potentially inhibit each other in vivo.ConclusionsFcɛRI is produced after antigen-specific IgE/FcɛRI-mediated activation signals and functions as an endogenous inhibitor of IgE loading to FcɛRI and IgE-mediated activation. Our results imply, therefore, that sFcɛRI contributes to a negative regulatory feedback loop that aims at preventing overshooting responses after IgE-mediated immune activation.
Project description:Allergic diseases are inflammatory disorders that involve many types of cells and factors, including allergens, immunoglobulin (Ig)E, mast cells, basophils, cytokines and soluble mediators. Among them, IgE plays a vital role in the development of acute allergic reactions and chronic inflammatory allergic diseases, making its control particularly important in the treatment of IgE-mediated allergic diseases. This review provides an overview of the current state of IgE targeted therapy development, focusing on three areas of translational research: IgE neutralization in blood; IgE-effector cell elimination; and IgE+ B cell reduction. IgE-targeted medicines such as FDA approved drug Xolair (Omalizumab) represent a promising avenue for treating IgE-mediated allergic diseases given the pernicious role of IgE in disease progression. Additionally, targeted therapy for IgE-mediated allergic diseases may be advanced through cellular treatments, including the modification of effector cells.
Project description:What is already known about this subjectOmalizumab is a humanized anti-IgE monoclonal antibody that binds and captures circulating IgE, preventing interaction with receptors on mast cells and basophils, thereby interrupting the allergic cascade. It has a well-characterized efficacy and safety profile in patients with asthma. While omalizumab is known to reduce serum free IgE concentrations, effects on total IgE and IgE production are less well characterized.What this study adds(i) Confirmation of prior hypotheses that IgE production can decrease with time when patients are given anti-IgE therapy; (ii) guidance on a biomarker, total IgE, which can be used to ascertain whether individual patients experience a change in their IgE production; and (iii) a way to assess whether patients' IgE production has been sufficiently down-regulated such that they may consider stopping anti-IgE therapy.AimTo determine whether excessive IgE production by patients with atopic allergic asthma decreases with omalizumab therapy.MethodsOmalizumab, free and total IgE data were obtained from an epidemiological study and six randomized, double-blind, placebo-controlled trials in patients with allergic asthma. The binding between omalizumab and IgE together with the production and elimination of IgE were modelled as previously, except that, in order to explain why total IgE was decreasing over a period of 5 years, the expression of IgE was allowed to change.ResultsThe prior constant IgE production model failed to converge on the data once long-term observations were included, whereas models allowing IgE production to decrease fitted. A feedback model indicated that, on average, IgE production decreased by 54% per year. This model was further developed with covariate searches indicating clinically small but statistically significant effects of age, gender, body mass index and race on some parameters. Model predictions were checked internally and externally against 3-5 year data from paediatric and adult atopic asthmatic patients and externally against extensive total IgE data from a long-duration (>1 year) phase 1 study which was not used in the model building.ConclusionsA pharmacokinetic-pharmacodynamic model incorporating omalizumab-IgE binding and feedback for control of IgE production indicates that omalizumab reduces production of IgE. This raises the possibility that indefinite treatment may not be required, only for perhaps a few years. After the initial accumulation, total IgE should provide a means to monitor IgE production and guide individual treatment decisions.
Project description:Growing evidence indicates the pathogenic role of autoreactive IgE in autoimmune diseases. Incidence of autoimmune and allergic diseases in the industrialized countries is consistently icreasing, thus leading to concerted efforts to comprehend the regulation of IgE-mediated mechanisms. The first reports of a presence of IgE autoantibodies in patients with autoimmune diseases have been published a long time ago, and it is now recognized that self-reactive IgE can mediate inflammatory response in bullous pemhigoid, systemic lupus erythematosus, chronic urticaria, and atopic dermatitis. The advances in understanding the pathomechanisms of these disorders brought to a successful use of anti-IgE strategies in their management. The present review discusses the current state of knowledge on the IgE-mediated autoimmunity and anti-IgE treatment, and pave the way for further exploration of the subject.
Project description:Immunoglobulin E (IgE) plays a key role in allergic asthma and is a clinically validated target for monoclonal antibodies. Therapeutic anti-IgE antibodies block the interaction between IgE and the Fc epsilon (Fcε) receptor, which eliminates or minimizes the allergic phenotype but does not typically curtail the ongoing production of IgE by B cells. We generated high-affinity anti-IgE antibodies (MEDI4212) that have the potential to both neutralize soluble IgE and eliminate IgE-expressing B-cells through antibody-dependent cell-mediated cytotoxicity. MEDI4212 variants were generated that contain mutations in the Fc region of the antibody or alterations in fucosylation in order to enhance the antibody's affinity for FcγRIIIa. All MEDI4212 variants bound to human IgE with affinities comparable to the wild-type (WT) antibody. Each variant was shown to inhibit the interaction between IgE and FcεRI, which translated into potent inhibition of FcγRI-mediated function responses. Importantly, all variants bound similarly to IgE at the surface of membrane IgE expressing cells. However, MEDI4212 variants demonstrated enhanced affinity for FcγRIIIa including the polymorphic variants at position 158. The improvement in FcγRIIIa binding led to increased effector function in cell based assays using both engineered cell lines and class switched human IgE B cells. Through its superior suppression of IgE, we anticipate that effector function enhanced MEDI4212 may be able to neutralize high levels of soluble IgE and provide increased long-term benefit by eliminating the IgE expressing B cells before they differentiate and become IgE secreting plasma cells.
Project description:Mast cells are major effectors in high-affinity IgE receptor (FcɛRI)-dependent allergic reactions. Here we show that phospholipase C (PLC)-β3 is crucial for FcɛRI-mediated mast cell activation. Plcb3(-/-) mice showed blunted FcɛRI-dependent late-phase, but not acute, anaphylactic responses and airway inflammation. Accordingly, FcɛRI stimulation of Plcb3(-/-) mast cells exhibited reduced cytokine production but normal degranulation. Reduced cytokine production in Plcb3(-/-) cells could be accounted for by increased activity of the negative regulatory Src family kinase Lyn and reduced activities of the positive regulatory protein kinases MAPKs. Mechanistically, PLC-β3 constitutively interacts with FcɛRI, Lyn, and SHP-1 (protein phosphatase). SHP-1 probably recognizes its substrates Lyn and MAPKs via the recently described kinase tyrosine-based inhibitory motif, KTIM. Consistent with PLC-β3- and SHP-1-mediated repression of Lyn activity by dephosphorylation at Tyr396, FcɛRI-mediated phenotypes were similar in Plcb3(-/-) and SHP-1 mutant mast cells. Thus, we have defined a PLC-β3- and SHP-1-mediated signaling pathway for FcɛRI-mediated cytokine production.
Project description:Background and objectivesActive antibody-mediated rejection is the main cause of kidney transplant loss, sharing with SLE the alloimmune response and the systemic activation of the IFN-α pathway. IgE-mediated immune response plays a key role in the development of SLE nephritis and is associated with IFN-α secretion. The aim of our study was to investigate IgE-mediated immune response in antibody-mediated rejection.Design, setting, participants, & measurementsThis was a cross-sectional study of 56 biopsy-proven antibody-mediated rejection study participants, 80 recipients with normal graft function/histology (control), 16 study participants with interstitial fibrosis/tubular atrophy, and six participants with SLE. We evaluated graft IgE deposition, tryptase (a mast cell marker), and CD203 (a specific marker of activated basophils) by immunofluorescence/confocal microscopy. In addition, we measured serum concentration of human myxovirus resistance protein 1, an IFN-α-induced protein, and anti-HLA IgE.ResultsWe observed a significantly higher IgE deposition in tubules and glomeruli in antibody-mediated rejection (1766±79 pixels) and SLE (1495±43 pixels) compared with interstitial fibrosis/tubular atrophy (582±122 pixels) and control (253±50 pixels). Patients with antibody-mediated rejection, but not control patients and patients with interstitial fibrosis/tubular atrophy, presented circulating anti-HLA IgE antibodies, although with a low mean fluorescence intensity. In addition, immunofluorescence revealed the presence of both mast cells and activated basophils in antibody-mediated rejection but not in control and interstitial fibrosis/tubular atrophy. The concentration of circulating basophils was significantly higher in antibody-mediated rejection compared with control and interstitial fibrosis/tubular atrophy. MxA serum levels were significantly higher in antibody-mediated rejection compared with control and correlated with the extent of IgE deposition.ConclusionsOur data suggest that IgE deposition and the subsequent recruitment of basophils and mast cells within the kidney transplant might play a role in antibody-mediated rejection.
Project description:CD23, the low-affinity receptor for IgE, exists in membrane and soluble forms. Soluble CD23 (sCD23) fragments are released from membrane (m)CD23 by the endogenous metalloprotease a disintegrin and metalloprotease 10. When purified tonsil B cells are incubated with IL-4 and anti-CD40 to induce class switching to IgE in vitro, mCD23 is upregulated, and sCD23 accumulates in the medium prior to IgE synthesis. We have uncoupled the effects of mCD23 cleavage and accumulation of sCD23 on IgE synthesis in this system. We show that small interfering RNA inhibition of CD23 synthesis or inhibition of mCD23 cleavage by an a disintegrin and metalloprotease 10 inhibitor, GI254023X, suppresses IL-4 and anti-CD40-stimulated IgE synthesis. Addition of a recombinant trimeric sCD23 enhances IgE synthesis in this system. This occurs even when endogenous mCD23 is protected from cleavage by GI254023X, indicating that IgE synthesis is positively controlled by sCD23. We show that recombinant trimeric sCD23 binds to cells coexpressing mIgE and mCD21 and caps these proteins on the B cell membrane. Upregulation of IgE by sCD23 occurs after class-switch recombination, and its effects are isotype-specific. These results suggest that mIgE and mCD21 cooperate in the sCD23-mediated positive regulation of IgE synthesis on cells committed to IgE synthesis. Feedback regulation may occur when the concentration of secreted IgE becomes great enough to allow binding to mCD23, thus preventing further release of sCD23. We interpret these results with the aid of a model for the upregulation of IgE by sCD23.