Identifying the optimal regional predictor of right ventricular global function: a high-resolution three-dimensional cardiac magnetic resonance study.
Ontology highlight
ABSTRACT: Right ventricular (RV) function has prognostic value in acute, chronic and peri-operative disease, although the complex RV contractile pattern makes rapid assessment difficult. Several two-dimensional (2D) regional measures estimate RV function, however the optimal measure is not known. High-resolution three-dimensional (3D) cardiac magnetic resonance cine imaging was acquired in 300 healthy volunteers and a computational model of RV motion created. Points where regional function was significantly associated with global function were identified and a 2D, optimised single-point marker (SPM-O) of global function developed. This marker was prospectively compared with tricuspid annular plane systolic excursion (TAPSE), septum-freewall displacement (SFD) and their fractional change (TAPSE-F, SFD-F) in a test cohort of 300 patients in the prediction of RV ejection fraction. RV ejection fraction was significantly associated with systolic function in a contiguous 7.3 cm2 patch of the basal RV freewall combining transverse (38%), longitudinal (35%) and circumferential (27%) contraction and coinciding with the four-chamber view. In the test cohort, all single-point surrogates correlated with RV ejection fraction (p < 0.010), but correlation (R) was higher for SPM-O (R = 0.44, p < 0.001) than TAPSE (R = 0.24, p < 0.001) and SFD (R = 0.22, p < 0.001), and non-significantly higher than TAPSE-F (R = 0.40, p < 0.001) and SFD-F (R = 0.43, p < 0.001). SPM-O explained more of the observed variance in RV ejection fraction (19%) and predicted it more accurately than any other 2D marker (median error 2.8 ml vs 3.6 ml, p < 0.001). We conclude that systolic motion of the basal RV freewall predicts global function more accurately than other 2D estimators. However, no markers summarise 3D contractile patterns, limiting their predictive accuracy.
SUBMITTER: Dawes TJW
PROVIDER: S-EPMC6767156 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA