End-point modification of recombinant thrombomodulin with enhanced stability and anticoagulant activity.
Ontology highlight
ABSTRACT: Thrombomodulin (TM) is an endothelial cell membrane protein that plays essential roles in controlling vascular haemostatic balance. The 4, 5, 6 EGF-like domain of TM (TM456) has cofactor activity for thrombin binding and subsequently protein C activation. Therefore, recombinant TM456 is a promising anticoagulant candidate but has a very short half-life. Ligation of poly (ethylene glycol) to a bioactive protein (PEGylation) is a practical choice to improve stability, extend circulating life, and reduce immunogenicity of the protein. Site-specific PEGylation is preferred as it could avoid the loss of protein activity resulting from nonspecific modification. We report herein two site-specific PEGylation strategies, enzymatic ligation and copper-free click chemistry (CFCC), for rTM456 modification. Recombinant TM456 with a C-terminal LPETG tag (rTM456-LPETG) was expressed in Escherichia coli for its end-point modification with NH2-diglycine-PEG5000-OMe via Sortase A-mediated ligation (SML). Similarly, an azide functionality was easily introduced at the C-terminus of rTM456-LPETG via SML with NH2-diglycine-PEG3-azide, which facilitates a site-specific PEGylation of rTM456via CFCC. Both PEGylated rTM456 conjugates retained protein C activation activity as that of rTM456. Also, they were more stable than rTM456 in Trypsin digestion assay. Further, both PEGylated rTM456 conjugates showed a concentration-dependent prolongation of thrombin clotting time (TCT) compared to non-modified protein, which confirms the effectiveness of these two site-specific PEGylation schemes.
SUBMITTER: Liu X
PROVIDER: S-EPMC6767613 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA