An evolutionary signal to fungal succession during plant litter decay.
Ontology highlight
ABSTRACT: Ecologists have frequently observed a pattern of fungal succession during litter decomposition, wherein different fungal taxa dominate different stages of decay in individual ecosystems. However, it is unclear which biological features of fungi give rise to this pattern. We tested a longstanding hypothesis that fungal succession depends on the evolutionary history of species, such that different fungal phyla prefer different decay stages. To test this hypothesis, we performed a meta-analysis across studies in 22 different ecosystem types to synthesize fungal decomposer abundances at early, middle and late stages of plant litter decay. Fungal phyla varied in relative abundance throughout decay, with fungi in the Ascomycota reaching highest relative abundance during early stages of decay (P < 0.001) and fungi in the Zygomycota reaching highest relative abundance during late stages of decay (P < 0.001). The best multiple regression model to explain variation in abundance of these fungal phyla during decay included decay stage, as well as plant litter type and climate factors. Most variation in decay-stage preference of fungal taxa was observed at basal taxonomic levels (phylum and class) rather than finer taxonomic levels (e.g. genus). For many finer-scale taxonomic groups and functional groups of fungi, plant litter type and climate factors were better correlates with relative abundance than decay stage per se, suggesting that the patchiness of fungal community composition in space is related to both resource and climate niches of different fungal taxa. Our study indicates that decomposer fungal succession is partially rooted in fungal decomposers' deep evolutionary history, traceable to the divergence among phyla.
SUBMITTER: Vivelo S
PROVIDER: S-EPMC6772037 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA