Unknown

Dataset Information

0

Genome-wide cell-free DNA fragmentation in patients with cancer.


ABSTRACT: Cell-free DNA in the blood provides a non-invasive diagnostic avenue for patients with cancer1. However, characteristics of the origins and molecular features of cell-free DNA are poorly understood. Here we developed an approach to evaluate fragmentation patterns of cell-free DNA across the genome, and found that profiles of healthy individuals reflected nucleosomal patterns of white blood cells, whereas patients with cancer had altered fragmentation profiles. We used this method to analyse the fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric or bile duct cancer and 245 healthy individuals. A machine learning model that incorporated genome-wide fragmentation features had sensitivities of detection ranging from 57% to more than 99% among the seven cancer types at 98% specificity, with an overall area under the curve value of 0.94. Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited number of sites in 75% of cases. Combining our approach with mutation-based cell-free DNA analyses detected 91% of patients with cancer. The results of these analyses highlight important properties of cell-free DNA and provide a proof-of-principle approach for the screening, early detection and monitoring of human cancer.

SUBMITTER: Cristiano S 

PROVIDER: S-EPMC6774252 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide cell-free DNA fragmentation in patients with cancer.

Cristiano Stephen S   Leal Alessandro A   Phallen Jillian J   Fiksel Jacob J   Adleff Vilmos V   Bruhm Daniel C DC   Jensen Sarah Østrup SØ   Medina Jamie E JE   Hruban Carolyn C   White James R JR   Palsgrove Doreen N DN   Niknafs Noushin N   Anagnostou Valsamo V   Forde Patrick P   Naidoo Jarushka J   Marrone Kristen K   Brahmer Julie J   Woodward Brian D BD   Husain Hatim H   van Rooijen Karlijn L KL   Ørntoft Mai-Britt Worm MW   Madsen Anders Husted AH   van de Velde Cornelis J H CJH   Verheij Marcel M   Cats Annemieke A   Punt Cornelis J A CJA   Vink Geraldine R GR   van Grieken Nicole C T NCT   Koopman Miriam M   Fijneman Remond J A RJA   Johansen Julia S JS   Nielsen Hans Jørgen HJ   Meijer Gerrit A GA   Andersen Claus Lindbjerg CL   Scharpf Robert B RB   Velculescu Victor E VE  

Nature 20190529 7761


Cell-free DNA in the blood provides a non-invasive diagnostic avenue for patients with cancer<sup>1</sup>. However, characteristics of the origins and molecular features of cell-free DNA are poorly understood. Here we developed an approach to evaluate fragmentation patterns of cell-free DNA across the genome, and found that profiles of healthy individuals reflected nucleosomal patterns of white blood cells, whereas patients with cancer had altered fragmentation profiles. We used this method to a  ...[more]

Similar Datasets

| PRJNA543357 | ENA
| PRJNA543358 | ENA
| S-EPMC11303779 | biostudies-literature
| EGAS00001003611 | EGA
| S-EPMC11323656 | biostudies-literature
| S-EPMC9406536 | biostudies-literature
| S-EPMC8108131 | biostudies-literature
| S-EPMC7503795 | biostudies-literature
| S-EPMC11321639 | biostudies-literature