Unknown

Dataset Information

0

The inference of sex-biased human demography from whole-genome data.


ABSTRACT: Sex-biased demographic events ("sex-bias") involve unequal numbers of females and males. These events are typically inferred from the relative amount of X-chromosomal to autosomal genetic variation and have led to conflicting conclusions about human demographic history. Though population size changes alter the relative amount of X-chromosomal to autosomal genetic diversity even in the absence of sex-bias, this has generally not been accounted for in sex-bias estimators to date. Here, we present a novel method to identify sex-bias from genetic sequence data that models population size changes and estimates the female fraction of the effective population size during each time epoch. Compared to recent sex-bias inference methods, our approach can detect sex-bias that changes on a single population branch without requiring data from an outgroup or knowledge of divergence events. When applied to simulated data, conventional sex-bias estimators are biased by population size changes, especially recent growth or bottlenecks, while our estimator is unbiased. We next apply our method to high-coverage exome data from the 1000 Genomes Project and estimate a male bias in Yorubans (47% female) and Europeans (44%), possibly due to stronger background selection on the X chromosome than on the autosomes. Finally, we apply our method to the 1000 Genomes Project Phase 3 high-coverage Complete Genomics whole-genome data and estimate a female bias in Yorubans (63% female), Europeans (84%), Punjabis (82%), as well as Peruvians (56%), and a male bias in the Southern Han Chinese (45%). Our method additionally identifies a male-biased migration out of Africa based on data from Europeans (20% female). Our results demonstrate that modeling population size change is necessary to estimate sex-bias parameters accurately. Our approach gives insight into signatures of sex-bias in sexual species, and the demographic models it produces can serve as more accurate null models for tests of selection.

SUBMITTER: Musharoff S 

PROVIDER: S-EPMC6774570 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

The inference of sex-biased human demography from whole-genome data.

Musharoff Shaila S   Shringarpure Suyash S   Bustamante Carlos D CD   Ramachandran Sohini S  

PLoS genetics 20190920 9


Sex-biased demographic events ("sex-bias") involve unequal numbers of females and males. These events are typically inferred from the relative amount of X-chromosomal to autosomal genetic variation and have led to conflicting conclusions about human demographic history. Though population size changes alter the relative amount of X-chromosomal to autosomal genetic diversity even in the absence of sex-bias, this has generally not been accounted for in sex-bias estimators to date. Here, we present  ...[more]

Similar Datasets

| S-EPMC8692969 | biostudies-literature
| S-EPMC7173940 | biostudies-literature
| S-EPMC8026070 | biostudies-literature
| S-EPMC6545087 | biostudies-literature
| S-EPMC3245873 | biostudies-literature
| S-EPMC2944028 | biostudies-literature
| S-EPMC4069612 | biostudies-literature
| S-EPMC3154645 | biostudies-literature
| S-EPMC5919751 | biostudies-literature
| S-EPMC4327160 | biostudies-literature