Project description:Adaptability and "emergent" properties are the dominant characteristics of complex systems, whether naturally occurring or engineered. Structurally, a complex system might be made up of a large number of simpler components, or it might be formed from hierarchies of smaller numbers of interacting subsystems and work together to produce a defined function. The nucleus of a cell has all of these features, many of which may become disrupted in cancer and other disease states. The general view is that cancer progresses gradually over time; cells become premalignant, then increasingly abnormal before they become cancerous. However, recent work by Stephens et al. (2011) has revealed that cancer can emerge much more rapidly. Based on DNA sequences from multiple cancer samples of various types, they show that cancer can arise suddenly from a single catastrophic event that causes massive genomic rearrangement.
Project description:Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as ?-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.
Project description:Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Project description:The analysis of samples from unsequenced and/or understudied species as well as samples where the proteome is derived from multiple organisms poses two key questions. The first is whether the proteomic data obtained from an unusual sample type even contains peptide tandem mass spectra. The second question is whether an appropriate protein sequence database is available for proteomic searches. We describe the use of automated de novo sequencing for evaluating both the quality of a collection of tandem mass spectra and the suitability of a given protein sequence database for searching that data. Applications of this method include the proteome analysis of closely related species, metaproteomics, and proteomics of extant organisms.
Project description:Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Project description:Triple-negative breast cancer (TNBC) tends to metastasize to the brain, a step that worsens the patient's prognosis. The specific hallmarks that determine successful metastasis are motility and invasion, microenvironment modulation, plasticity, and colonization. Zinc, an essential trace element, has been shown to be involved in all of these processes. In this work, we focus our attention on the potential role of zinc during TNBC metastasis. We used MDA-MB-BrM2 (BrM2) cells, a brain metastasis model derived from the parental TNBC cell line MDA-MB-231. Our studies show that BrM2 cells had double the zinc content of MDA-MB-231 cells. Moreover, exploring different metastatic hallmarks, we found that the zinc concentration is especially important in the microenvironment modulation of brain metastatic cells, enhancing the expression of SerpinB2. Furthermore, we show that zinc promotes the tumorigenic capacity of breast cancer stem cells. In addition, by causing a disturbance in MDA-MB-231 zinc homeostasis by overexpressing the Zip4 transporter, we were able to increase tumorigenicity. Nevertheless, this strategy did not completely recapitulate the BrM2 metastatic phenotype. Altogether, our work suggests that zinc plays an important role in the transformative steps that tumoral cells take to acquire tumorigenic potential and niche specificity.
Project description:Prostate cancer (PCa) is a critical global public health issue with its incidence on the rise. Radiation therapy holds a primary role in PCa treatment; however, radiation resistance has become increasingly challenging as we uncover more about PCa's pathogenesis. Our review aims to investigate the multifaceted mechanisms underlying radiation therapy resistance in PCa. Specifically, we will examine how various factors, such as cell cycle regulation, DNA damage repair, hypoxic conditions, oxidative stress, testosterone levels, epithelial-mesenchymal transition, and tumor stem cells, contribute to radiation therapy resistance. By exploring these mechanisms, we hope to offer new insights and directions towards overcoming the challenges of radiation therapy resistance in PCa. This can also provide a theoretical basis for the clinical application of novel ultra-high-dose-rate (FLASH) radiotherapy in the era of PCa.
Project description:Gastric cancers have been historically classified based on histomorphologic features. The Cancer Genome Atlas network reported the comprehensive identification of genetic alterations associated with gastric cancer, identifying four distinct subtypes- Epstein-Barr virus (EBV)-positive, microsatellite-unstable/instability (MSI), genomically stable and chromosomal instability. In particular, EBV-positive and MSI gastric cancers seem responsive to novel immunotherapies drugs. The aim of this review is to describe MSI and EBV positive gastric cancer's subgroups and their relationship with novel immunotherapy.
Project description:BackgroundLung cancer has a high impact on both patients and relatives due to the high disease burden and short life expectancy. Previous studies looked into treatment goals patients have before starting a systemic treatment. However, studies on relatives' perceptions of treatment at the end of life are scarce. Therefore, we studied the perspectives of relatives in hindsight on the achievement of treatment goals and the choice to start treatment for metastatic lung cancer of their loved one.MethodsWe conducted a structured telephone interview study in six hospitals across the Netherlands, one academic and five non-academic hospitals, between February 2017 and November 2019. We included 118 relatives of deceased patients diagnosed with metastatic lung cancer who started a systemic treatment as part of usual care (chemotherapy, immunotherapy or targeted therapy with tyrosine kinase inhibitors (TKIs) and who completed a questionnaire on their treatment goals before the start of treatment and when treatment was finished. We asked the relatives about the achievement of patients' treatment goals and relatives' satisfaction with the choice to start treatment. This study is part of a larger study in which 266 patients with metastatic lung cancer participated who started a systemic treatment and reported their treatment goals before start of the treatment and the achievement of these goals after the treatment.ResultsRelatives reported the goals 'quality of life', 'decrease tumour size' and 'life prolongation' as achieved in 21, 37 and 41% respectively. The majority of the relatives (78%) were satisfied with the choice to start a treatment and even when none of the goals were achieved, 70% of the relatives were satisfied. About 50% of relatives who were satisfied with the patients' choice mentioned negative aspects of the treatment choice, such as the treatment did not work, there were side effects or it would not have been the relatives' choice. Whereas, 80% of relatives who were not satisfied mentioned negative aspects of the treatment choice. The most mentioned positive aspects were that they tried everything and that it was the patient's choice.ConclusionThe majority of relatives reported patients' treatment goals as not achieved. However, relatives were predominantly satisfied about the treatment choice. Satisfaction does not provide a full picture of the experience with the treatment decision considering that the majority of relatives mentioned (also) negative aspects of this decision. At the time of making the treatment decision it is important to manage expectations about the chance of success and the possible side effects of the treatment.
Project description:The whole genome sequence of Dolosigranulum pigrum isolated from the blood of a patient with interstitial lung disease was sequenced with the Pacific Biosciences RS II platform. The genome size is 2.1 Mb with 2,127 annotated coding sequences; it contained two clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems.