Project description:BackgroundWe previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP.MethodsImmunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC).ResultsMUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC.ConclusionsThe distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway.
Project description:Within warm-blooded animals, Toxoplasma gondii switches from an actively replicating form called a tachyzoite into a slow growing encysted form called a bradyzoite. To uncover the genes involved in bradyzoite development, we screened over 8000 T. gondii insertional mutants by immunofluorescence microscopy. We identified nine bradyzoite development mutants that were defective in both cyst wall formation and expression of a bradyzoite specific heat shock protein. One of these mutants, named 42F5, contained an insertion into the predicted gene TGME49_097520. The disrupted protein is serine/proline-rich with homology to proteophosphoglycans from Leishmania. T. gondii proteophosphoglycan (GU182879) expressed from the native promoter was undetectable in tachyzoites, but bradyzoites show punctate spots within the parasite and staining around the parasitophorous vacuole. Complementation of the 42F5 mutant with GU182879 expressed from either the alpha-tubulin or native promoter restores cyst wall formation. Overall, GU182879 is upregulated in bradyzoites and enhances cyst wall component expression and assembly.
Project description:The gain-of-function MUC5B promoter variant rs35705950 is the dominant risk factor for developing idiopathic pulmonary fibrosis (IPF). Here we show in humans that MUC5B, a mucin thought to be restricted to conducting airways, is co-expressed with surfactant protein C (SFTPC) in type 2 alveolar epithelia and in epithelial cells lining honeycomb cysts, indicating that cell types involved in lung fibrosis in distal airspace express MUC5B. In mice, we demonstrate that Muc5b concentration in bronchoalveolar epithelia is related to impaired mucociliary clearance (MCC) and to the extent and persistence of bleomycin-induced lung fibrosis. We also establish the ability of the mucolytic agent P-2119 to restore MCC and to suppress bleomycin-induced lung fibrosis in the setting of Muc5b overexpression. Our findings suggest that mucociliary dysfunction might play a causative role in bleomycin-induced pulmonary fibrosis in mice overexpressing Muc5b, and that MUC5B in distal airspaces is a potential therapeutic target in humans with IPF.
Project description:The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.
Project description:BackgroundAirway mucus hypersecretion is one of the important pathological features of chronic obstructive pulmonary disease (COPD). MUC5B is the main mucin expressed in the airways of COPD patients and has been indicated to play an important role in airway defense. However, the specific biological function of MUC5B in COPD and the possible mechanism are not clear.MethodsWe established a COPD model with 24-week-old MUC5B-/- mice exposed to cigarette smoke and tested our hypothesis through lung function tests, HE and PAS staining, immunohistochemistry (IHC), western blot, q-PCR and ELISA.ResultsCompared with MUC5B+/+ mice, MUC5B-/- mice had worse general condition and lung function, increased inflammatory infiltration, reduced goblet cell differentiation as indicated by decreased PAS staining (PAS grade: 1.8 ± 0.24 vs. 0.6 ± 0.16), reduced MUC5AC expression (ELISA: 0.30 ± 0.01 vs. 0.17 ± 0.01 mg/ml, q-PCR: 9.4 ± 1.7 vs. 4.1 ± 0.1 fold, IHC score: 3.1 ± 0.9 vs. 1.6 ± 0.7), increased macrophage secretion of inflammatory factors (TNF-α and IL-6) and expression of downstream pathway factors (ERK1/2 and NF-κB), decreased expression of SPDEF and STAT6, and increased expression of FOXA2.ConclusionThe protective effect of MUC5B in the development of COPD was mediated by the promotion of goblet cell differentiation and the inhibition of inflammation. The role of MUC5B in regulating inflammation was related to macrophage function, and goblet cell differentiation was promoted by the induced expression of STAT6 and SPDEF. This study describes a mechanism of mucus hypersecretion and identifies MUC5B as a new target for the treatment of mucus hypersecretion.
Project description:BackgroundChronic otitis media (COM) is characterized by middle ear fluid predominantly containing cytokines, Nontypeable haemophilus influenzae (NTHi), the mucin MUC5B, and neutrophil extracellular traps (NETs). NETs consist of extracellular DNA coated with antibacterial proteins such as myeloperoxidase (MPO) and citrullinated histone 3 (CitH3). NETs can damage tissues and sustain inflammation. Our study aimed to develop an in vitro model of NETosis, testing COM inductors.MethodsNETosis was evaluated in fresh blood human neutrophils attached to collagen-coated plates and in suspension exposed to phorbol myristate acetate (PMA) as a control, and COM relevant mediators. Confocal microscopy, DNA fluorescence assay and flow cytometry were used to quantify NETosis.ResultsPMA exposure induced DNA, MPO, and CitH3 by immunofluorescence (IF) most significantly at 3 hours (3.8-fold for DAPI, 7.6-fold for MPO, and 6.9-fold for CitH3, all P?<?.05). IL-8 and TNF-? cytokines showed milder increases of DAPI, MPO, and CitH3 positive cells. NTHi had no effect on these NETs markers. Purified salivary MUC5B (10 to 40??g/mL) produced potent increases, comparable to PMA. A composite NET score summing the fold-increases for DAPI, MPO, and CitH3 demonstrated PMA at 13.6 to 19 relative to control set at 1; and MUC5B at 8.6 to 16.3 (all P?<?.05). IL-8 and TNF-? showed scores of 5.4 and 3, respectively, but these were not statistically significant.ConclusionWe developed a reliable in vitro assay for NETosis which demonstrated that salivary MUC5B is a potent inductor of NETs whereas IL-8, TNF-?, live and lyzed NTHi demonstrated minimal to no NETosis.Level of evidenceNA.
Project description:ImportanceThe study of bacterial interactions and salivary-mediated regulation of early dental biofilm activity is of interest for understanding oral microbial adaptation to environmental cues and biofilm maturation. Findings in oral commensals can prove useful from the perspectives of both oral and systemic health of the host, as well as the understanding of general microbial biofilm physiology. The knowledge may provide a basis for the development of prognostic biomarkers, or development of new treatment strategies, related to oral health and disease and possibly also to other biofilm-induced conditions. The study is also an important step toward developing the methodology for similar studies in other species and/or growth conditions.
Project description:The organization of the normal airway mucus system differs in small experimental animals from that in humans and large mammals. To address normal murine airway mucociliary clearance, Alcian blue-stained mucus transport was measured ex vivo on tracheal tissues of naïve C57BL/6, Muc5b-/-, Muc5ac-/-, and EGFP-tagged Muc5b reporter mice. Close to the larynx with a few submucosal glands, the mucus appeared as thick bundles. More distally in the trachea and in large bronchi, Alcian blue-stained mucus was organized in cloud-like formations based on the Muc5b mucin. On tilted tissue, the mucus clouds moved upward toward the larynx with an average velocity of 12 µm/s compared with 20 µm/s for beads not associated with clouds. In Muc5ac-/- mice, Muc5b formed mucus strands attached to the tissue surface, while in Muc5b-/- mice, Muc5ac had a more variable appearance. The normal mouse lung mucus thus appears as discontinuous clouds, clearly different from the stagnant mucus layer in diseased lungs.
Project description:The nephron is the basic physiologic subunit of the mammalian kidney and is made up of several apicobasally polarized epithelial cell types. The process of apicobasal polarization in animal cells is controlled by the evolutionarily conserved Crumbs (CRB), Partitioning-defective, and Scribble protein complexes. Here, we investigated the role of protein associated with LIN-7 1 (Pals1, also known as Mpp5), a core component of the apical membrane-determining CRB complex in the nephron. Pals1 interacting proteins, including Crb3 and Wwtr1/Taz, have been linked to renal cyst formation in mice before. Immunohistologic analysis revealed Pals1 expression in renal tubular cells and podocytes of human kidneys. Mice lacking one Pals1 allele (functionally haploid for Pals1) in nephrons developed a fully penetrant phenotype, characterized by cyst formation and severe defects in renal barrier function, which led to death within 6-8 weeks. In Drosophila nephrocytes, deficiency of the Pals1 ortholog caused alterations in slit-diaphragm-like structures. Additional studies in epithelial cell culture models revealed that Pals1 functions as a dose-dependent upstream regulator of the crosstalk between Hippo- and TGF-?-mediated signaling. Furthermore, Pals1 haploinsufficiency in mouse kidneys associated with the upregulation of Hippo pathway target genes and marker genes of TGF-? signaling, including biomarkers of renal diseases. These findings support a link between apical polarity proteins and renal diseases, especially renal cyst diseases. Further investigation of the Pals1-linked networks is required to decipher the mechanisms underlying the pathogenesis of these diseases.
Project description:Mutations in polycystin 1 and 2 (PC1 and PC2) cause the common genetic kidney disorder autosomal dominant polycystic kidney disease (ADPKD). It is unknown how these mutations result in renal cysts, but dysregulation of calcium (Ca(2+)) signaling is a known consequence of PC2 mutations. PC2 functions as a Ca(2+)-activated Ca(2+) channel of the endoplasmic reticulum. We hypothesize that Ca(2+) signaling through PC2, or other intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor (InsP3R), is necessary to maintain renal epithelial cell function and that disruption of the Ca(2+) signaling leads to renal cyst development. The cell line LLC-PK1 has traditionally been used for studying PKD-causing mutations and Ca(2+) signaling in 2D culture systems. We demonstrate that this cell line can be used in long-term (8 wk) 3D tissue culture systems. In 2D systems, knockdown of InsP3R results in decreased Ca(2+) transient signals that are rescued by overexpression of PC2. In 3D systems, knockdown of either PC2 or InsP3R leads to cyst formation, but knockdown of InsP3R type 1 (InsP3R1) generated the largest cysts. InsP3R1 and InsP3R3 are differentially localized in both mouse and human kidney, suggesting that regional disruption of Ca(2+) signaling contributes to cystogenesis. All cysts had intact cilia 2 wk after starting 3D culture, but the cells with InsP3R1 knockdown lost cilia as the cysts grew. Studies combining 2D and 3D cell culture systems will assist in understanding how mutations in PC2 that confer altered Ca(2+) signaling lead to ADPKD cysts.