The Structure and Species Co-Occurrence Networks of Soil Denitrifying Bacterial Communities Differ Between A Coniferous and A Broadleaved Forests.
Ontology highlight
ABSTRACT: Acacia mangium (AM) and Pinus massoniana (PM) are widely planted in tropical regions, whereas their effects on soil microbial communities remain unclear. We did a comprehensive investigation of soil denitrifying bacterial communities in AM and PM monoculture plantations in Southern China based on the high throughput sequencing data of their functional genes: nirK, nirS, and nosZ. The average abundance of nosZ (1.3 × 107) was significantly higher than nirS (5.6 × 106) and nirK (4.9 × 105). Shannon estimator revealed a markedly higher ?-diversity of nirS and nosZ communities in PM than in AM plantations. The AM and PM plantations were dominated by different nirS and nosZ taxa belonging to proteobacteria, actinobacteria, thermoleophilia, chloroflexia, and acidobacteria, while the dominant nirK taxa were mainly categorized into proteobacteria in both types of plantations. The structure of nirS and nosZ communities shifted substantially from AM to PM plantations with changes in soil moisture, NH4+, and microbial biomass nitrogen content. The species co-occurrence network of nirK community was better organized in a more modular manner compared to nirS and nosZ communities, and the network keystone species mostly occurred in PM plantations. These results indicated a highly species corporation of nirK community in response to environmental changes, especially in PM plantations. AM and PM plantations can form different soil denitrifying microbial communities via altering soil physicochemical properties, which may further affect soil N transformations.
SUBMITTER: Chen J
PROVIDER: S-EPMC6780695 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA