Unknown

Dataset Information

0

Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells.


ABSTRACT: Fluorescence microscopy is one of the workhorses of biomedical research and laboratory diagnosis; however, their cost, size, maintenance, and fragility has prevented their adoption in developing countries or low-resource settings. Although significant advances have decreased their size, cost and accessibility, their designs and assembly remain rather complex. Here, inspired on the simple mechanism from a nut and a bolt, we report the construction of a portable fluorescence microscope that operates in bright-field mode and in three fluorescence channels: UV, green, and red. It is assembled in under 10 min from only six 3D printed parts, basic electronic components, a microcomputer (Raspberry Pi) and a camera, all of which can be readily purchased in most locations or online for US $122. The microcomputer was programmed in Python language to capture time-lapse images and videos. Resolution and illumination conditions of the microscope were characterized, and its performance was compared with a high-end fluorescence microscope in bright-field and fluorescence mode. We demonstrate that our miniature microscope can resolve and track single cells in both modes. The instructions on how to assemble the microscope are shown in a video, and the software to control it and the design files of the 3D-printed parts are freely available online. Our portable microscope is ideal in applications where space is at a premium, such as lab-on-a-chips or space missions, and can find applications in basic and clinical research, diagnostics, telemedicine and in educational settings.

SUBMITTER: Tristan-Landin SB 

PROVIDER: S-EPMC6786622 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells.

Tristan-Landin Samuel B SB   Gonzalez-Suarez Alan M AM   Jimenez-Valdes Rocio J RJ   Garcia-Cordero Jose L JL  

PloS one 20191010 10


Fluorescence microscopy is one of the workhorses of biomedical research and laboratory diagnosis; however, their cost, size, maintenance, and fragility has prevented their adoption in developing countries or low-resource settings. Although significant advances have decreased their size, cost and accessibility, their designs and assembly remain rather complex. Here, inspired on the simple mechanism from a nut and a bolt, we report the construction of a portable fluorescence microscope that operat  ...[more]

Similar Datasets

| S-EPMC9537509 | biostudies-literature
| S-EPMC7255852 | biostudies-literature
| S-EPMC7955119 | biostudies-literature
2024-07-02 | GSE262295 | GEO
2013-03-14 | GSE45146 | GEO
2013-06-28 | GSE34137 | GEO
| S-EPMC5955387 | biostudies-literature
| S-EPMC8211988 | biostudies-literature
| S-EPMC5014008 | biostudies-literature
| S-EPMC5176263 | biostudies-literature