Unknown

Dataset Information

0

Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations.


ABSTRACT: Bacteria often live in spatially structured groups such as biofilms. In these groups, cells can collectively generate gradients through the uptake and release of compounds. In turn, individual cells adapt their activities to the environment shaped by the whole group. Here, we studied how these processes can generate phenotypic variation in clonal populations and how this variation contributes to the resilience of the population to antibiotics. We grew two-dimensional populations of Escherichia coli in microfluidic chambers where limiting amounts of glucose were supplied from one side. We found that the collective metabolic activity of cells created microscale gradients where nutrient concentration varied over a few cell lengths. As a result, growth rates and gene expression levels varied strongly between neighbouring cells. Furthermore, we found evidence for a metabolic cross-feeding interaction between glucose-fermenting and acetate-respiring subpopulations. Finally, we found that subpopulations of cells were able to survive an antibiotic pulse that was lethal in well-mixed conditions, likely due to the presence of a slow-growing subpopulation. Our work shows that emergent metabolic gradients can have important consequences for the functionality of bacterial populations as they create opportunities for metabolic interactions and increase the populations' tolerance to environmental stressors. This article is part of a discussion meeting issue 'Single cell ecology'.

SUBMITTER: Dal Co A 

PROVIDER: S-EPMC6792440 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations.

Dal Co Alma A   van Vliet Simon S   Ackermann Martin M  

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 20191007 1786


Bacteria often live in spatially structured groups such as biofilms. In these groups, cells can collectively generate gradients through the uptake and release of compounds. In turn, individual cells adapt their activities to the environment shaped by the whole group. Here, we studied how these processes can generate phenotypic variation in clonal populations and how this variation contributes to the resilience of the population to antibiotics. We grew two-dimensional populations of <i>Escherichi  ...[more]

Similar Datasets

| S-EPMC2854504 | biostudies-literature
| S-EPMC5547604 | biostudies-literature
| S-EPMC4325790 | biostudies-literature
| S-EPMC5201096 | biostudies-literature
| S-EPMC4206990 | biostudies-literature
2017-01-06 | GSE80597 | GEO
| S-EPMC8194079 | biostudies-literature
| S-EPMC6194032 | biostudies-literature
| S-EPMC3360885 | biostudies-literature
| S-EPMC8486852 | biostudies-literature