Unknown

Dataset Information

0

Respiratory syncytial virus nonstructural proteins 1 and 2: Exceptional disrupters of innate immune responses.


ABSTRACT: Human respiratory syncytial virus (RSV) is the most important cause of acute lower respiratory tract disease in infants worldwide. As a first line of defense against respiratory infections, innate immune responses, including the production of type I and III interferons (IFNs), play an important role. Upon infection with RSV, multiple pattern recognition receptors (PRRs) can recognize RSV-derived pathogen-associated molecular patterns (PAMPs) and mount innate immune responses. Retinoic-acid-inducible gene-I (RIG-I) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) have been identified as important innate receptors to mount type I IFNs during RSV infection. However, type I IFN levels remain surprisingly low during RSV infection despite strong viral replication. The poor induction of type I IFNs can be attributed to the cooperative activity of 2 unique, nonstructural (NS) proteins of RSV, i.e., NS1 and NS2. These viral proteins have been shown to suppress both the production and signaling of type I and III IFNs by counteracting a plethora of key host innate signaling proteins. Moreover, increasing numbers of IFN-stimulated genes (ISGs) are being identified as targets of the NS proteins in recent years, highlighting an underexplored protein family in the identification of NS target proteins. To understand the diverse effector functions of NS1 and NS2, Goswami and colleagues proposed the hypothesis of the NS degradasome (NSD) complex, a multiprotein complex made up of, at least, NS1 and NS2. Furthermore, the crystal structure of NS1 was resolved recently and, remarkably, identified NS1 as a structural paralogue of the RSV matrix protein. Unfortunately, no structural data on NS2 have been published so far. In this review, we briefly describe the PRRs that mount innate immune responses upon RSV infection and provide an overview of the various effector functions of NS1 and NS2. Furthermore, we discuss the ubiquitination effector functions of NS1 and NS2, which are in line with the hypothesis that the NSD shares features with the canonical 26S proteasome.

SUBMITTER: Sedeyn K 

PROVIDER: S-EPMC6797084 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Respiratory syncytial virus nonstructural proteins 1 and 2: Exceptional disrupters of innate immune responses.

Sedeyn Koen K   Schepens Bert B   Saelens Xavier X  

PLoS pathogens 20191017 10


Human respiratory syncytial virus (RSV) is the most important cause of acute lower respiratory tract disease in infants worldwide. As a first line of defense against respiratory infections, innate immune responses, including the production of type I and III interferons (IFNs), play an important role. Upon infection with RSV, multiple pattern recognition receptors (PRRs) can recognize RSV-derived pathogen-associated molecular patterns (PAMPs) and mount innate immune responses. Retinoic-acid-induc  ...[more]

Similar Datasets

| S-EPMC8997753 | biostudies-literature
| S-EPMC5083087 | biostudies-literature
| S-EPMC5884420 | biostudies-literature
| S-EPMC3904736 | biostudies-literature
| S-EPMC8759664 | biostudies-literature
| S-EPMC5489658 | biostudies-literature
| S-EPMC3432290 | biostudies-literature
| S-EPMC5116403 | biostudies-literature
| S-EPMC5587315 | biostudies-literature
| S-EPMC6819090 | biostudies-literature