Unknown

Dataset Information

0

DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data.


ABSTRACT: Single-cell RNA sequencing (scRNA-seq) offers new opportunities to study gene expression of tens of thousands of single cells simultaneously. We present DeepImpute, a deep neural network-based imputation algorithm that uses dropout layers and loss functions to learn patterns in the data, allowing for accurate imputation. Overall, DeepImpute yields better accuracy than other six publicly available scRNA-seq imputation methods on experimental data, as measured by the mean squared error or Pearson's correlation coefficient. DeepImpute is an accurate, fast, and scalable imputation tool that is suited to handle the ever-increasing volume of scRNA-seq data, and is freely available at https://github.com/lanagarmire/DeepImpute .

SUBMITTER: Arisdakessian C 

PROVIDER: S-EPMC6798445 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data.

Arisdakessian Cédric C   Poirion Olivier O   Yunits Breck B   Zhu Xun X   Garmire Lana X LX  

Genome biology 20191018 1


Single-cell RNA sequencing (scRNA-seq) offers new opportunities to study gene expression of tens of thousands of single cells simultaneously. We present DeepImpute, a deep neural network-based imputation algorithm that uses dropout layers and loss functions to learn patterns in the data, allowing for accurate imputation. Overall, DeepImpute yields better accuracy than other six publicly available scRNA-seq imputation methods on experimental data, as measured by the mean squared error or Pearson'  ...[more]

Similar Datasets

| S-EPMC9306045 | biostudies-literature
| S-EPMC7677776 | biostudies-literature
| S-EPMC8323916 | biostudies-literature
| S-EPMC8560090 | biostudies-literature
| S-EPMC7979803 | biostudies-literature
| S-EPMC7666660 | biostudies-literature
| S-EPMC8275983 | biostudies-literature
| S-EPMC6955367 | biostudies-literature
| S-EPMC7235046 | biostudies-literature
| S-EPMC7523643 | biostudies-literature