Unknown

Dataset Information

0

Spatio-Temporal Neural Changes After Task-Switching Training in Old Age.


ABSTRACT: In the present study, we aimed at examining selective neural changes after task-switching training in old age by not only considering the spatial location but also the timescale of brain activation changes (i.e., sustained/block-related or transient/trial-related timescales). We assigned a sample of 50 older adults to a task-switching training or an active single-task control group. We administered two task paradigms, either sensitive to transient (i.e., a context-updating task) or sustained (i.e., a delayed-recognition working-memory task) dynamics of cognitive control. These dynamics were captured by utilizing an appropriate event-related or block-related functional magnetic resonance imaging design. We captured selective changes in task activation during the untrained tasks after task-switching training compared to an active control group. Results revealed changes at the neural level that were not evident from only behavioral data. Importantly, neural changes in the transient-sensitive context updating task were found on the same timescale but in a different region (i.e., in the left inferior parietal lobule) than in the task-switching training task (i.e., ventrolateral PFC, inferior frontal junction, superior parietal lobule), only pointing to temporal overlap, while neural changes in the sustained-sensitive delayed-recognition task overlapped in both timescale and region with the task-switching training task (i.e., in the basal ganglia), pointing to spatio-temporal overlap. These results suggest that neural changes after task-switching training seem to be critically supported by the temporal organization of neural processing.

SUBMITTER: Dorrenbacher S 

PROVIDER: S-EPMC6803514 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatio-Temporal Neural Changes After Task-Switching Training in Old Age.

Dörrenbächer Sandra S   Schütz Chiara C   Woirgardt Marc M   Wu C Carolyn CC   Zimmer Hubert D HD   Kray Jutta J  

Frontiers in aging neuroscience 20191015


In the present study, we aimed at examining selective neural changes after task-switching training in old age by not only considering the spatial location but also the timescale of brain activation changes (i.e., sustained/block-related or transient/trial-related timescales). We assigned a sample of 50 older adults to a task-switching training or an active single-task control group. We administered two task paradigms, either sensitive to transient (i.e., a context-updating task) or sustained (i.  ...[more]

Similar Datasets

| S-EPMC5702656 | biostudies-literature
| S-EPMC3329525 | biostudies-literature
| S-EPMC7039846 | biostudies-literature
| S-EPMC8416616 | biostudies-literature
| S-EPMC5461867 | biostudies-literature
| S-EPMC2962703 | biostudies-literature
| S-EPMC8286950 | biostudies-literature
| S-EPMC5255904 | biostudies-literature
| S-EPMC2871374 | biostudies-literature
| S-EPMC7214871 | biostudies-literature