A CRISPR Test for Detection of Circulating Nuclei Acids.
Ontology highlight
ABSTRACT: Emerging CRISPR-based nucleic acid detection shows great promise in molecular diagnosis of diseases. CRISPR-Cas12a can sensitively and specifically detect human papillomavirus (HPV) DNA in anal swabs. However, the current CRISPR-Cas12a system needs auxiliary and expensive equipment, which limit its application as a point-of-care (POC) diagnostic tool. This study aimed to develop CRISPR-Cas12a as a POC test to directly target plasma for circulating HPV DNA detection by immediately reading results with naked eyes. Cell-cultured supernatants of either HPV16- or 18-positive cancer cells were treated with lysis buffer followed by isothermal amplification without DNA isolation. Cas12a, crRNA, and fluorescent-biotin reporters were incubated with the lysates. Our data showed that integrating CRISPR-Cas12a with lateral-flow strips could directly and specifically detect HPV16 and 18 in the liquid samples with the same limit of detection (0.24 fM) as did polymerase chain reaction but requiring less time. Furthermore, the CRISPR-Cas12a system could rapidly detect presence of HPV16 and HPV18 in plasma samples of 13 of 14 and 3 of 10 the patients with histopathological diagnosis of cervical cancer, respectively. Therefore, a CRISPR-Cas12a-based POC system was developed for conveniently detecting circulating nuclei acid targets in body fluids without requiring technical expertise and ancillary machineries.
SUBMITTER: Tsou JH
PROVIDER: S-EPMC6807067 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA