Unknown

Dataset Information

0

Berberine (BBR) Attenuated Palmitic Acid (PA)-Induced Lipotoxicity in Human HK-2 Cells by Promoting Peroxisome Proliferator-Activated Receptor ? (PPAR-?).


ABSTRACT: BACKGROUND Berberine (BBR), a natural alkaloid isolated from Coptis chinensis, has frequently been reported as an antidiabetic reagent, partly due to its lipid-lowering activity. Evidence suggests that BBR ameliorates palmitate-induced lipid deposition and apoptosis in renal tubular epithelial cells (TECs), which tracks in tandem with the enhancement of peroxisome proliferator-activated receptor alpha (PPAR-alpha). The study aim was to investigate the roles of BBR in renal lipotoxicity in vitro, and investigate whether PPAR-alpha was the underlying mechanism. MATERIAL AND METHODS Human TECs (HK-2 cells) were injured with palmitic acid (PA), and then treated with BBR, BBR+PPAR-alpha inhibitor (GW6471), and PA+PPAR-alpha agonist (fenofibrate). Endoplasmic reticulum (ER) stress was assessed by measuring the expression of prospective evaluation of radial keratotomy (PERK), C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). Lipid metabolism was assessed by determining lipid anabolism-associated genes, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and lipoprotein lipase (LPL), as well as lipid catabolism-associated gene, including carnitine palmitoyl transferase 1 (CPT1). Inflammatory response of HK-2 cells was evaluated by measuring interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha. Cell apoptosis and protein levels of cleaved-caspase-3 were evaluated. RESULTS PA downregulated PPAR-alpha and induced server lipotoxicity in HK-2 cells by ER stress, increasing lipid deposition, and elevating inflammatory response of HK-2 cells accompanied with inducting cell apoptosis and cleaved-caspase-3, which were obviously reversed by additional treatment of BBR or PPAR-alpha agonist. However, the protective effect of BBR in PA-induced lipotoxicity in HK-2 cells was significantly ameliorated by PPAR-alpha inhibitor. CONCLUSIONS BBR attenuated PA-induced lipotoxicity via the PPAR-alpha pathway.

SUBMITTER: Wu Y 

PROVIDER: S-EPMC6812469 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Berberine (BBR) Attenuated Palmitic Acid (PA)-Induced Lipotoxicity in Human HK-2 Cells by Promoting Peroxisome Proliferator-Activated Receptor α (PPAR-α).

Wu Yueyue Y   Chen Fangyuan F   Huang Xinmei X   Zhang Rui R   Yu Zhiyan Z   Chen Zaoping Z   Liu Jun J  

Medical science monitor : international medical journal of experimental and clinical research 20191014


BACKGROUND Berberine (BBR), a natural alkaloid isolated from Coptis chinensis, has frequently been reported as an antidiabetic reagent, partly due to its lipid-lowering activity. Evidence suggests that BBR ameliorates palmitate-induced lipid deposition and apoptosis in renal tubular epithelial cells (TECs), which tracks in tandem with the enhancement of peroxisome proliferator-activated receptor alpha (PPAR-alpha). The study aim was to investigate the roles of BBR in renal lipotoxicity in vitro,  ...[more]

Similar Datasets

| S-EPMC1562413 | biostudies-literature
| S-EPMC3725004 | biostudies-literature
| S-EPMC1221919 | biostudies-other
| S-EPMC4631943 | biostudies-literature
| S-EPMC2678137 | biostudies-literature
| S-EPMC5282948 | biostudies-literature
| S-EPMC4212005 | biostudies-literature
| S-EPMC6274845 | biostudies-literature
| S-EPMC3359336 | biostudies-literature
| S-EPMC2118721 | biostudies-literature