Unknown

Dataset Information

0

Single-Atom Fluorescence Switch: A General Approach toward Visible-Light-Activated Dyes for Biological Imaging.


ABSTRACT: Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mechanism as suggested by theoretical calculations. Significantly, upon exposure to air and visible light residing in their absorption regime (365-630 nm), thio-caged fluorophores can be efficiently desulfurized to their oxo derivatives, thus restoring strong emission of the fluorophores. The effective photoactivation makes thio-caged fluorophores promising candidates for super-resolution imaging, which was realized by photoactivated localization microscopy (PALM) with low-power activation light under physiological conditions in the absence of cytotoxic additives (e.g., thiols, oxygen scavengers), a feature superior to traditional PALM probes. The versatility of this thio-caging strategy was further demonstrated by multicolor super-resolution imaging of lipid droplets and proteins of interest.

SUBMITTER: Tang J 

PROVIDER: S-EPMC6812504 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-Atom Fluorescence Switch: A General Approach toward Visible-Light-Activated Dyes for Biological Imaging.

Tang Juan J   Robichaux Michael A MA   Wu Kuan-Lin KL   Pei Jingqi J   Nguyen Nhung T NT   Zhou Yubin Y   Wensel Theodore G TG   Xiao Han H  

Journal of the American Chemical Society 20190909 37


Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mecha  ...[more]

Similar Datasets

| S-EPMC4762565 | biostudies-literature
| S-EPMC7473402 | biostudies-literature
| S-EPMC6657358 | biostudies-literature
| S-EPMC2922755 | biostudies-literature
| S-EPMC5789862 | biostudies-other
| S-EPMC6640734 | biostudies-literature
| S-EPMC8796306 | biostudies-literature
| S-EPMC9314014 | biostudies-literature
| S-EPMC6384794 | biostudies-literature
| S-EPMC7856904 | biostudies-literature