Project description:Background and objectiveErythropoietin (EPO) is a candidate neuroprotective drug. We assessed its long-term safety and efficacy as an adjunct to methylprednisolone in patients with optic neuritis and focused on conversions to multiple sclerosis (MS).MethodsThe TONE trial randomized 108 patients with acute optic neuritis but without previously known MS to either 33,000 IU EPO or placebo in conjunction with 1,000 mg methylprednisolone daily for 3 days. After reaching the primary end point at 6 months, we conducted an open-label follow-up 2 years after randomization.ResultsThe follow-up was attended by 83 of 103 initially analyzed patients (81%). There were no previously unreported adverse events. The adjusted treatment difference of peripapillary retinal nerve fiber layer atrophy in relation to the fellow eye at baseline was 1.27 µm (95% CI -6.45 to 8.98, p = 0.74). The adjusted treatment difference in low-contrast letter acuity was 2.87 on the 2.5% Sloan chart score (95% CI -7.92 to 13.65). Vision-related quality of life was similar in both treatment arms (National Eye Institute Visual Functioning Questionnaire median score [IQR]: 94.0 [88.0 to 96.9] in the EPO and 93.4 [89.5 to 97.4] in the placebo group). The rate of multiple sclerosis-free survival was 38% in the placebo and 53% in the EPO group (hazard ratio: 1.67, 95% CI 0.96 to 2.88, p = 0.068).DiscussionIn line with the results at 6 months, we found neither structural nor functional benefits in the visual system of patients with optic neuritis as a clinically isolated syndrome, 2 years after EPO administration. Although there were fewer early conversions to MS in the EPO group, the difference across the 2-year window was not statistically significant.Classification of evidenceThis study provides Class II evidence that for patients with acute optic neuritis, EPO as an adjunct to methylprednisolone is well tolerated and does not improve long-term visual outcomes.Trial registration informationThe trial was preregistered before commencement at clinicaltrials.gov (NCT01962571).
Project description:Changes in cerebral lesion load by magnetic resonance imaging (MRI) in patients from a double-blind, placebo-controlled, phase II study on erythropoietin in clinically isolated optic neuritis (ClinicalTrials.gov, NCT00355095) were analyzed. Therefore, patients with acute optic neuritis were assigned to receive either 33,000 IU of recombinant human erythropoietin (IV) daily for three days, or a placebo, as an add-on to methylprednisolone. Of 35 patients, we investigated changes in cerebral lesion load in MRIs obtained at baseline and at weeks 4, 8, and 16. In 5 of the 35 patients, we found conversion into multiple sclerosis (MS) based on MRI progression only. These five patients had received the placebo. Another five patients showed MRI progression together with relapses. Three of these patients had received erythropoietin, and two the placebo. Yet, analyzing the change in absolute numbers of periventricular, juxtacortical, and infratentorial lesions including gadolinium-enhancing lesions, there were no significant differences between the groups. Although effective in terms of retinal nerve fiber layer protection, erythropoietin treatment of acute isolated optic neuritis did not influence further evolution of MRI lesions in the brain when comparing absolute numbers. However, early conversion from clinically isolated syndrome to MS assessed by MRI activity seemed to occur more frequently in the placebo-treated group.
Project description:AIMS: The aim of this study is to provide a clinical update on optic neuritis (ON), its association with multiple sclerosis (MS), and neuromyelitis optica (NMO). METHODS: This study included a PubMed review of the literature written in the English language. RESULTS: ON in adults is typically idiopathic or demyelinating, and is characterised by unilateral, subacute, painful loss of vision that is not associated with any systemic or other neurological symptoms. Demyelinating ON is associated with MS, and we review the key studies of ON including the ON treatment trial and several other MS treatment trials and NMO. CONCLUSION: Acute demyelinating ON can occur in isolation or be associated with MS. Typical ON does not require additional evaluation other than cranial magnetic resonance imaging. NMO is likely a separate disorder from MS and the ON in NMO has a different treatment and prognosis. METHODOLOGY: The authors conducted an English language search using Pubmed from the years 1964 to 2010 using the search terms 'ON', 'MS' and 'NMO'. The authors included original articles, review articles, and case reports, which revealed new aspects as far as epidemiology, histopathology, clinical manifestations, imaging, genetics, and treatment of ON. Titles were reviewed for topicality and full references were obtained. Letters to the editor, unpublished work, and abstracts were not included in this review.
Project description:IntroductionOptic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function.Methods and analysisTreatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤ 0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33,000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months.Ethics and disseminationTONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki, local laws and ICH-GCP.Trial registration numberNCT01962571.
Project description:ObjectiveThe first international consensus criteria for optic neuritis (ICON) were published in 2022. We applied these criteria to a prospective, global observational study of acute optic neuritis (ON).MethodsWe included 160 patients with a first-ever acute ON suggestive of a demyelinating CNS disease from the Acute Optic Neuritis Network (ACON). We applied the 2022 ICON to all participants and subsequently adjusted the ICON by replacing a missing relative afferent pupillary defect (RAPD) or dyschromatopsia if magnetic resonance imaging pathology of the optical nerve plus optical coherence tomography abnormalities or certain biomarkers are present.ResultsAccording to the 2022 ICON, 80 (50%) patients were classified as definite ON, 12 (7%) patients were classified as possible ON, and 68 (43%) as not ON (NON). The main reasons for classification as NON were absent RAPD (52 patients, 76%) or dyschromatopsia (49 patients, 72%). Distribution of underlying ON etiologies was as follows: 78 (49%) patients had a single isolated ON, 41 (26%) patients were diagnosed with multiple sclerosis, 25 (16%) patients with myelin oligodendrocyte glycoprotein antibody-associated disease, and 15 (9%) with neuromyelitis optica spectrum disorder. The application of the adjusted ON criteria yielded a higher proportion of patients classified as ON (126 patients, 79%).InterpretationAccording to the 2022 ICON, almost half of the included patients in ACON did not fulfill the requirements for classification of definite or possible ON, particularly due to missing RAPD and dyschromatopsia. Thorough RAPD examination and formal color vision testing are critical to the application of the 2022 ICON.
Project description:The clinical diagnosis and natural history of optic neuritis was established in the late 1880s by the ophthalmologists von Graefe and Nettleship. The earlier, accurate and insightful description of transient, bilateral visual loss of Esther, the main character in the Charles Dickens novel Bleak House (1852--1853), suggests optic neuritis as a Dickensian diagnosis. Remarkably, Dickens' observations, also preceding the earliest clinical description of multiple sclerosis by Charcot in 1868, described many clinical features such as a prodromal phase; a nadir; gradual recovery over weeks; glare disability; reduced contrast sensitivity; possibly Uhthoff's phenomenon; and visual fading. All this with an accuracy that, to quote Russell Brain, "would credit a trained physician."
Project description:Signs and symptoms of optic neuritis (ON), an autoimmune disorder of the central nervous system (CNS), differ between patients. Pain, which is commonly reported by ON patients, may be the major reason for some patients to visit the clinic. This article reviews the presence of pain related to ON with respect to underlying disorders, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein associated disease (MOGAD). The aim of this review is to provide an overview of pain symptoms in accordance with the context of various pathophysiological explanations, assist in differential diagnosis of ON patients, especially at the onset of disease, and make recommendations to aid physicians make decisions for follow up diagnostic examinations.
Project description:Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision.
Project description:BackgroundOptic neuritis is an inflammatory disease of the optic nerve. It occurs more commonly in women than in men. Usually presenting with an abrupt loss of vision, recovery of vision is almost never complete. Closely linked in pathogenesis to multiple sclerosis, it may be the initial manifestation for this condition. In certain patients, no underlying cause can be found.ObjectivesTo assess the effects of corticosteroids on visual recovery of patients with acute optic neuritis.Search methodsWe searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 1), MEDLINE (January 1950 to February 2012), EMBASE (January 1980 to February 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to February 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 21 February 2012. We also searched reference lists of identified trial reports to find additional trials.Selection criteriaWe included randomized trials that evaluated corticosteroids, in any form, dose or route of administration, in people with acute optic neuritis.Data collection and analysisTwo authors independently extracted the data on methodological quality and outcomes for analysis.Main resultsWe included six randomized trials which included a total of 750 participants. Two trials evaluated low dose oral corticosteroids while one trial evaluated low dose intravenous corticosteroids across two treatment arms and two trials evaluated a higher dose of intravenous corticosteroids. One three-arm trial evaluated low-dose oral corticosteroids and high-dose intravenous corticosteroids against placebo. Trials evaluating oral corticosteroids compared varying doses of corticosteroids with placebo. Hence, we did not conduct a meta-analysis of such trials. In a meta-analysis of trials evaluating corticosteroids with total dose greater than 3000 mg administered intravenously, the relative risk of normal visual acuity with intravenous corticosteroids compared with placebo was 1.06 (95% confidence interval (CI) 0.89 to 1.27) at six months and 1.06 (95% CI 0.92 to 1.22) at one year. The risk ratio of normal contrast sensitivity for the same comparison was 1.10 (95% CI 0.92 to 1.32) at six months follow up. We did not conduct a meta-analysis for this outcome at one year follow up since there was substantial statistical heterogeneity. The risk ratio of normal visual field for this comparison was 1.08 (95% CI 0.96 to 1.22) at six months and 1.02 (95% CI 0.86 to 1.20) at one year. Quality of life was assessed and reported in one trial.Authors' conclusionsThere is no conclusive evidence of benefit in terms of recovery to normal visual acuity, visual field or contrast sensitivity with either intravenous or oral corticosteroids at the doses evaluated in trials included in this review.