Unknown

Dataset Information

0

Crowder-Induced Conformational Ensemble Shift in Escherichia coli Prolyl-tRNA Synthetase.


ABSTRACT: The effect of molecular crowding on the structure and function of Escherichia coli prolyl-transfer RNA synthetase (Ec ProRS), a member of the aminoacyl-transfer RNA synthetase family, has been investigated using a combined experimental and theoretical method. Ec ProRS is a multidomain enzyme; coupled-domain dynamics are essential for efficient catalysis. To gain insight into the mechanistic detail of the crowding effect, kinetic studies were conducted with varying concentrations and sizes of crowders. In parallel, spectroscopic and quantum chemical studies were employed to probe the "soft interactions" between crowders and protein side chains. Finally, the dynamics of the dimeric protein was examined in the presence of crowders using a long-duration (70 ns) classical molecular dynamic simulations. The results of the simulations revealed a shift in the conformational ensemble, which is consistent with the preferential exclusion of cosolutes. The "soft interactions" model of the crowding effect also explained the alteration in kinetic parameters. In summary, the study found that the effects of molecular crowding on both conformational dynamics and catalytic function are correlated in the multidomain Ec ProRS, an enzyme that is central to protein synthesis in all living cells. This study affirmed that large and small cosolutes have considerable impacts on the structure, dynamics, and function of modular proteins and therefore must be considered for stabilizing protein-based pharmaceuticals and industrial enzymes.

SUBMITTER: Adams LM 

PROVIDER: S-EPMC6818166 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crowder-Induced Conformational Ensemble Shift in Escherichia coli Prolyl-tRNA Synthetase.

Adams Lauren M LM   Andrews Ryan J RJ   Hu Quin H QH   Schmit Heidi L HL   Hati Sanchita S   Bhattacharyya Sudeep S  

Biophysical journal 20190831 7


The effect of molecular crowding on the structure and function of Escherichia coli prolyl-transfer RNA synthetase (Ec ProRS), a member of the aminoacyl-transfer RNA synthetase family, has been investigated using a combined experimental and theoretical method. Ec ProRS is a multidomain enzyme; coupled-domain dynamics are essential for efficient catalysis. To gain insight into the mechanistic detail of the crowding effect, kinetic studies were conducted with varying concentrations and sizes of cro  ...[more]

Similar Datasets

| S-EPMC7704565 | biostudies-literature
| S-EPMC3749879 | biostudies-literature
2021-12-20 | MSV000088593 | MassIVE
| S-EPMC3443146 | biostudies-other
| S-EPMC6295713 | biostudies-literature
| S-EPMC6839821 | biostudies-literature
| S-EPMC6209979 | biostudies-literature
| S-EPMC8346053 | biostudies-literature
| S-EPMC3281520 | biostudies-literature
2022-09-24 | GSE213683 | GEO