Unknown

Dataset Information

0

Diagnosing Glaucoma Progression with Visual Field Data Using a Spatiotemporal Boundary Detection Method.


ABSTRACT: Diagnosing glaucoma progression is critical for limiting irreversible vision loss. A common method for assessing glaucoma progression uses a longitudinal series of visual fields (VF) acquired at regular intervals. VF data are characterized by a complex spatiotemporal structure due to the data generating process and ocular anatomy. Thus, advanced statistical methods are needed to make clinical determinations regarding progression status. We introduce a spatiotemporal boundary detection model that allows the underlying anatomy of the optic disc to dictate the spatial structure of the VF data across time. We show that our new method provides novel insight into vision loss that improves diagnosis of glaucoma progression using data from the Vein Pulsation Study Trial in Glaucoma and the Lions Eye Institute trial registry. Simulations are presented, showing the proposed methodology is preferred over existing spatial methods for VF data. Supplementary materials for this article are available online and the method is implemented in the R package womblR.

SUBMITTER: Berchuck SI 

PROVIDER: S-EPMC6818507 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Diagnosing Glaucoma Progression with Visual Field Data Using a Spatiotemporal Boundary Detection Method.

Berchuck Samuel I SI   Mwanza Jean-Claude JC   Warren Joshua L JL  

Journal of the American Statistical Association 20190401 527


Diagnosing glaucoma progression is critical for limiting irreversible vision loss. A common method for assessing glaucoma progression uses a longitudinal series of visual fields (VF) acquired at regular intervals. VF data are characterized by a complex spatiotemporal structure due to the data generating process and ocular anatomy. Thus, advanced statistical methods are needed to make clinical determinations regarding progression status. We introduce a spatiotemporal boundary detection model that  ...[more]

Similar Datasets

| S-EPMC6420602 | biostudies-literature
| S-EPMC5894829 | biostudies-literature
| S-EPMC6438211 | biostudies-literature
| S-EPMC4135248 | biostudies-other
| S-EPMC8684309 | biostudies-literature
| S-EPMC7118669 | biostudies-literature
| S-EPMC5017314 | biostudies-literature
| S-EPMC6856104 | biostudies-literature
| S-EPMC6690643 | biostudies-literature
| S-EPMC6026549 | biostudies-literature