Unknown

Dataset Information

0

FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans.


ABSTRACT: We report on 2 patients with compound heterozygous mutations in forkhead box N1 (FOXN1), a transcription factor essential for thymic epithelial cell (TEC) differentiation. TECs are critical for T cell development. Both patients had a presentation consistent with T-/loB+NK+ SCID, with normal hair and nails, distinct from the classic nude/SCID phenotype in individuals with autosomal-recessive FOXN1 mutations. To understand the basis of this phenotype and the effects of the mutations on FOXN1, we generated mice using CRISPR-Cas9 technology to genocopy mutations in 1 of the patients. The mice with the Foxn1 compound heterozygous mutations had thymic hypoplasia, causing a T-B+NK+ SCID phenotype, whereas the hair and nails of these mice were normal. Characterization of the functional changes due to the Foxn1 mutations revealed a 5-amino acid segment at the end of the DNA-binding domain essential for the development of TECs but not keratinocytes. The transcriptional activity of this Foxn1 mutant was partly retained, indicating a region that specifies TEC functions. Analysis of an additional 9 FOXN1 mutations identified in multiple unrelated patients revealed distinct functional consequences contingent on the impact of the mutation on the DNA-binding and transactivation domains of FOXN1.

SUBMITTER: Du Q 

PROVIDER: S-EPMC6819092 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


We report on 2 patients with compound heterozygous mutations in forkhead box N1 (FOXN1), a transcription factor essential for thymic epithelial cell (TEC) differentiation. TECs are critical for T cell development. Both patients had a presentation consistent with T-/loB+NK+ SCID, with normal hair and nails, distinct from the classic nude/SCID phenotype in individuals with autosomal-recessive FOXN1 mutations. To understand the basis of this phenotype and the effects of the mutations on FOXN1, we g  ...[more]

Similar Datasets

| S-EPMC4259972 | biostudies-literature
| S-EPMC5447125 | biostudies-literature
| S-EPMC2842093 | biostudies-literature
| S-EPMC4245359 | biostudies-literature
| S-EPMC5701267 | biostudies-literature
| S-EPMC7457090 | biostudies-literature
| S-EPMC1360172 | biostudies-literature
| S-EPMC4678370 | biostudies-literature