The evolution of climate tolerance in conifer-feeding aphids in relation to their host's climatic niche.
Ontology highlight
ABSTRACT: Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species-level distribution data for the conifer-feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host-specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host-specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.
SUBMITTER: Arnal P
PROVIDER: S-EPMC6822038 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA