Unknown

Dataset Information

0

Facile Synthesis of Quaternary Structurally Ordered L12-Pt(Fe, Co, Ni)3 Nanoparticles with Low Content of Platinum as Efficient Oxygen Reduction Reaction Electrocatalysts.


ABSTRACT: Synthesis of electrocatalysts for oxygen reduction reaction (ORR) with not only prominent electrocatalytic performance but also a low amount of Pt is the urgent challenge in the popularization of fuel cells. In this work, through a facile synthetic strategy of spray dehydration on a solid surface and annealing process, we demonstrate the first manufacture of quaternary structurally ordered PtM3 (M = transition metal) intermetallic nanoparticles (NPs), Pt(Fe, Co, Ni)3, in order to lower the content of Pt. The atomic contents of Pt, Fe, Co, and Ni are equal and the chemical structure of Pt(Fe, Co, Ni)3 is a cubic L12-ordered structure. L12-Pt(Fe, Co, Ni)3/C electrocatalysts exhibit enhanced electrocatalytic performance toward ORR with mass activity (MA) 6.6 times higher than the commercial Pt/C and a minimal loss of 17% in MA and 1.5% loss in specific activity (SA) after 10?000 potential cycles at 0.9 V. Furthermore, the stability behavior is confirmed to be attributed to the coaction of particle sizes and the ordering effect. Compared with traditional Pt-based electrocatalysts in the stoichiometric forms of Pt3M and PtM, L12-Pt(Fe, Co, Ni)3 intermetallic NPs exhibit excellent performance and higher cost effectiveness. Moreover, this work also proposes a facile and effective synthetic strategy for manufacturing multicomponent Pt-based electrocatalysts for ORR.

SUBMITTER: Wang S 

PROVIDER: S-EPMC6822218 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Facile Synthesis of Quaternary Structurally Ordered L1<sub>2</sub>-Pt(Fe, Co, Ni)<sub>3</sub> Nanoparticles with Low Content of Platinum as Efficient Oxygen Reduction Reaction Electrocatalysts.

Wang Sihao S   Luo Qingyu Q   Zhu Yingfang Y   Tang Shaolong S   Du Youwei Y  

ACS omega 20191016 18


Synthesis of electrocatalysts for oxygen reduction reaction (ORR) with not only prominent electrocatalytic performance but also a low amount of Pt is the urgent challenge in the popularization of fuel cells. In this work, through a facile synthetic strategy of spray dehydration on a solid surface and annealing process, we demonstrate the first manufacture of quaternary structurally ordered PtM<sub>3</sub> (M = transition metal) intermetallic nanoparticles (NPs), Pt(Fe, Co, Ni)<sub>3</sub>, in or  ...[more]

Similar Datasets

| S-EPMC10071814 | biostudies-literature
| S-EPMC10496914 | biostudies-literature
| S-EPMC8458471 | biostudies-literature
| S-EPMC3810666 | biostudies-other
| S-EPMC4648033 | biostudies-literature
| S-EPMC9948554 | biostudies-literature
| S-EPMC5510012 | biostudies-literature
| S-EPMC8184513 | biostudies-literature
| S-EPMC9753504 | biostudies-literature
| S-EPMC10254712 | biostudies-literature