Unknown

Dataset Information

0

S1P1 Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia.


ABSTRACT: M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 (S1P1) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between S1P1 and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of S1P1 is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether S1P1 was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing S1P1 activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing S1P1 activity with AUY954 administration inhibited M1-polarizatioin-relevant NF-?B activation in post-ischemic brain. Particularly, NF-?B activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through S1P1 in post-ischemic brain mainly occurred in activated microglia. Suppressing S1P1 activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that S1P1 could also influence M2 polarization in post-ischemic brain. Finally, suppressing S1P1 activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following S1P1 activation. Overall, these results revealed S1P1-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.

SUBMITTER: Gaire BP 

PROVIDER: S-EPMC6824626 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

S1P<sub>1</sub> Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia.

Gaire Bhakta Prasad BP   Bae Young Joo YJ   Choi Ji Woong JW  

Biomolecules & therapeutics 20191101 6


M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 (S1P<sub>1</sub>) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between S1P<sub>1</sub> and microglial activation as a patho  ...[more]

Similar Datasets

| S-EPMC6180378 | biostudies-literature
| S-EPMC6702157 | biostudies-literature
| S-EPMC6492913 | biostudies-literature
| S-EPMC2743462 | biostudies-literature
| S-EPMC7217376 | biostudies-literature
| S-EPMC3049478 | biostudies-literature
| S-EPMC4742299 | biostudies-literature
| S-EPMC5771556 | biostudies-literature
| S-EPMC5097787 | biostudies-literature
| S-EPMC6701099 | biostudies-literature