Unknown

Dataset Information

0

DHA-SBT-1214 Taxoid Nanoemulsion and Anti-PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model.


ABSTRACT: The goal of this study was to evaluate combination of a novel taxoid, DHA-SBT-1214 chemotherapy, in modulating immune checkpoint marker expression and ultimately in improving antibody-based checkpoint blockade therapy in pancreatic adenocarcinoma (PDAC). DHA-SBT-1214 was encapsulated in an oil-in-water nanoemulsion and administered systemically in Panc02 syngeneic PDAC-bearing C57BL/6 mice. Following treatment with DHA-SBT-1214, expression levels of PD-L1 were measured and anti-PD-L1 antibody was administered in combination. The effects of combination therapy on efficacy and the molecular basis of synergistic effects were evaluated. PD-L1 expression was lower on Panc02 pancreatic tumor cells in vitro, which significantly increased after exposure to different chemotherapy drugs. Administration of DHA-SBT-1214, gemcitabine, and PD-L1 antibody alone failed to increase CD8+ T-cell infiltration inside tumors. However, combination of anti-PD-L1 therapy with a novel chemotherapy drug DHA-SBT-1214 in nanoemulsion (NE-DHA-SBT-1214) significantly enhanced CD8+ T-cell infiltration and the therapeutic effects of the anti-PD-L1 antibody. Furthermore, in the Panc02 syngeneic model, the NE-DHA-SBT-1214 combination therapy group reduced tumor growth to a higher extend than paclitaxel, nab-paclitaxel (Abraxane), gemcitabine, or single anti-PD-L1 antibody therapy groups. Our results indicate that NE-DHA-SBT-1214 stimulated immunogenic potential of PDAC and provided an enhanced therapeutic effect with immune checkpoint blockade therapy, which warrants further evaluation.

SUBMITTER: Ahmad G 

PROVIDER: S-EPMC6825580 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

DHA-SBT-1214 Taxoid Nanoemulsion and Anti-PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model.

Ahmad Gulzar G   Mackenzie Gerardo G GG   Egan James J   Amiji Mansoor M MM  

Molecular cancer therapeutics 20190822 11


The goal of this study was to evaluate combination of a novel taxoid, DHA-SBT-1214 chemotherapy, in modulating immune checkpoint marker expression and ultimately in improving antibody-based checkpoint blockade therapy in pancreatic adenocarcinoma (PDAC). DHA-SBT-1214 was encapsulated in an oil-in-water nanoemulsion and administered systemically in Panc02 syngeneic PDAC-bearing C57BL/6 mice. Following treatment with DHA-SBT-1214, expression levels of PD-L1 were measured and anti-PD-L1 antibody wa  ...[more]

Similar Datasets

| S-EPMC5591776 | biostudies-literature
| S-EPMC4930724 | biostudies-literature
| S-EPMC7934870 | biostudies-literature
2020-04-16 | E-MTAB-7777 | biostudies-arrayexpress
| S-EPMC7101303 | biostudies-literature
| S-EPMC6074764 | biostudies-literature
| S-EPMC8215302 | biostudies-literature
| S-EPMC8601126 | biostudies-literature
| S-EPMC7453903 | biostudies-literature
| S-EPMC8553560 | biostudies-literature