Unknown

Dataset Information

0

Arl13b Regulates Breast Cancer Cell Migration and Invasion by Controlling Integrin-Mediated Signaling.


ABSTRACT: Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors' ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion. Therefore, understanding the mechanisms by which cancer cell invasion is controlled may provide new strategies to impair cancer progression. We investigated the role of the ADP-ribosylation factor (Arf)-like (Arl) protein Arl13b in breast cancer cell migration and invasion in vitro, using breast cancer cell lines and in vivo, using mouse orthotopic models. We show that Arl13b silencing inhibits breast cancer cell migration and invasion in vitro, as well as cancer progression in vivo. We also observed that Arl13b is upregulated in breast cancer cell lines and patient tissue samples. Moreover, we found that Arl13b localizes to focal adhesions (FAs) and interacts with ?3-integrin. Upon Arl13b silencing, ?3-integrin cell surface levels and FA size are increased and integrin-mediated signaling is inhibited. Therefore, we uncover a role for Arl13b in breast cancer cell migration and invasion and provide a new mechanism for how ARL13B can function as an oncogene, through the modulation of integrin-mediated signaling.

SUBMITTER: Casalou C 

PROVIDER: S-EPMC6826833 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors' ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion. Therefore, understanding the mechanisms by which cancer cell invasion is controlled may provide new strategies to impair cancer progression. We investigat  ...[more]

Similar Datasets

| S-EPMC10088543 | biostudies-literature
| S-EPMC2172880 | biostudies-other
| S-EPMC6771145 | biostudies-literature
| S-EPMC4986708 | biostudies-literature
| S-EPMC3680918 | biostudies-literature
| S-EPMC3122944 | biostudies-literature
| S-EPMC4385928 | biostudies-literature
| S-EPMC7571404 | biostudies-literature
| S-EPMC4382185 | biostudies-literature
| S-EPMC6134074 | biostudies-literature