Functional Block Copolymers Carrying One Double-Stranded Ladderphane and One Single-Stranded Block in a Facile Metathesis Cyclopolymerization Procedure.
Ontology highlight
ABSTRACT: In order to improve the poor film-forming ability of polymeric ladderphane, di-block copolymers containing perylene diimide (PDI)-linked double-stranded poly(1,6-heptadiyne) ladderphane and branched alkyl side chains modified single-stranded poly(1,6-heptadiyne) were synthesized by metathesis cyclopolymerization (MCP) using Grubbs third-generation catalyst (Ru-III) in tetrahydrofuran solvent. The first block containing the ladderphane structure leads to higher thermal-stability, wider UV-vis absorption, lower LUMO level and ladderphane-induced rigidity and poor film-forming ability. The second block containing long alkyl chains is crucial for the guarantee of excellent film-forming ability. By comparing the effect of ladderphane structure on the resulted copolymers, single-stranded poly(1,6-heptadiyne) derivatives with PDI pedant were also processed. The structures of copolymers were proved by 1H NMR and gel permeation chromatography, electrochemical, photophysical, and thermal-stability performance were achieved by cyclic voltammetry (CV), UV-visible spectroscopy and thermogravimetric analysis (TGA) measurements. According to the experiment results, both copolymers possessed outstanding film-forming ability, which cannot be realized by small PDI molecules and oligomers. And they can serve as a superior candidate as for n-type materials, especially for their relatively wide range of light absorption (? = 200~800 nm), and lower LUMO level (-4.3 and -4.0 eV).
SUBMITTER: Song W
PROVIDER: S-EPMC6829535 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA