TREM-1 Is Upregulated in Experimental Periodontitis, and Its Blockade Inhibits IL-17A and RANKL Expression and Suppresses Bone loss.
Ontology highlight
ABSTRACT: AIM:Triggering receptor expressed on myeloid cells-1 (TREM-1) is a modifier of local and systemic inflammation. There is clinical evidence implicating TREM-1 in the pathogenesis of periodontitis. However, a cause-and-effect relationship has yet to be demonstrated, as is the underlying mechanism. The aim of this study was to elucidate the role of TREM-1 using the murine ligature-induced periodontitis model. METHODS:A synthetic antagonistic LP17 peptide or sham control was microinjected locally into the palatal gingiva of the ligated molar teeth. RESULTS:Mice treated with the LP17 inhibitor developed significantly less bone loss as compared to sham-treated mice, although there were no differences in total bacterial load on the ligatures. To elucidate the impact of LP17 on the host response, we analyzed the expression of a number of immune-modulating genes. The LP17 peptide altered the expression of 27/92 genes ? two-fold, but only interleukin (IL)-17A was significantly downregulated (4.9-fold). Importantly, LP17 also significantly downregulated the receptor activator of nuclear factor kappa-B-ligand (RANKL) to osteoprotegerin (OPG) ratio that drives osteoclastic bone resorption in periodontitis. CONCLUSION:Our findings show for the first time that TREM-1 regulates the IL-17A-RANKL/OPG axis and bone loss in experimental periodontitis, and its therapeutic blockade may pave the way to a novel treatment for human periodontitis.
SUBMITTER: Bostanci N
PROVIDER: S-EPMC6832657 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA