Project description:Similar to other common chronic diseases, chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder with multiple disease subtypes. Candidate gene studies have found genetic associations for COPD-related phenotypes that may be relevant for pharmacogenetics studies, including lung function decline and COPD exacerbations. However, few COPD pharmacogenetics studies have been completed. Most studies have focused on the role of variants in the beta(2)-adrenergic receptor gene on bronchodilator response, but the findings have been inconclusive. Candidate gene studies highlight the concept that genes for COPD susceptibility may also be relevant in COPD pharmacogenetics. Currently, there are no clinical applications of pharmacogenetics to COPD therapy, but the use of pharmacogenetics to determine initial smoking cessation therapy may be closer to clinical application.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:Chronic obstructive pulmonary disease (COPD) prevalence is rising to epidemic proportions due to historical smoking trends, the aging of the population, and air pollution. Although blaming the victims has been common in COPD, the majority of COPD worldwide is now thought to be nonsmoking related, that is, caused by air pollution and cookstove exposure. It is increasingly appreciated that subjective and objective sleep disturbances are common in COPD, although strong epidemiological data are lacking. People with obstructive sleep apnea (OSA) plus COPD (the so-called overlap syndrome) have a high risk of cardiovascular death, although again mechanisms are unknown and untested. This review aims to draw attention to the problem of sleep in COPD, to encourage clinicians to ask their patients about symptoms, and to stimulate further research in this area given the large burden of the disease.
Project description:BackgroundTelehealth (TH) was introduced as a promising tool to support integrated care for the management of chronic obstructive pulmonary disease (COPD). It aims at improving self-management and providing remote support for continuous disease management. However, it is often not clear how TH-supported services fit into existing pathways for COPD management. The objective of this study is to uncover where TH can successfully contribute to providing care for COPD patients exemplified in a Greek care pathway. The secondary objective is to identify what conditions need to be considered for successful implementation of TH services.MethodsBuilding on a single case study, we used a two-phase approach to identify areas in a Greek COPD care pathway where care services that are recommended in clinical guidelines are currently not implemented (challenges) and areas that are not explicitly recommended in the guidelines but that would benefit from TH services (opportunities). In phase I, we used the care delivery value chain framework to identify the divergence between the clinical guidelines and the actual practice captured by a survey with COPD healthcare professionals. In phase II, we conducted in-depth interviews with the same healthcare professionals based on the discovered divergences. The responses were analyzed with respect to identified opportunities for TH and care pathway challenges.ResultsOur results reveal insights in two areas. First, several areas with challenges were identified: patient education, self-management, medication adherence, physical activity, and comorbidity management. TH opportunities were perceived as offering better bi-directional communication and a tool for reassuring patients. Second, considering the identified challenges and opportunities together with other case context details a set of conditions was extracted that should be fulfilled to implement TH successfully.ConclusionsThe results of this case study provide detailed insights into a care pathway for COPD in Greece. Addressing the identified challenges and opportunities in this pathway is crucial for adopting and implementing service innovations. Therefore, this study contributes to a better understanding of requirements for the successful implementation of integrated TH services in the field of COPD management. Consequently, it may encourage healthcare professionals to implement TH-supported services as part of routine COPD management.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.
Project description:Chronic obstructive pulmonary disease (COPD) is a common and preventable airway disease causing significant worldwide mortality and morbidity. Lifetime exposure to tobacco smoking and environmental particles are the two major risk factors. Over recent decades, COPD has become a growing public health problem with an increase in incidence. COPD is defined by airflow limitation due to airway inflammation and small airway remodelling coupled to parenchymal lung destruction. Most patients exhibit neutrophil-predominant airway inflammation combined with an increase in macrophages and CD8+ T-cells. Asthma is a heterogeneous chronic inflammatory airway disease. The most studied subtype is type 2 (T2) high eosinophilic asthma, for which there are an increasing number of biologic agents developed. However, both asthma and COPD are complex and share common pathophysiological mechanisms. They are known as overlapping syndromes as approximately 40% of patients with COPD present an eosinophilic airway inflammation. Several studies suggest a putative role of eosinophilia in lung function decline and COPD exacerbation. Recently, pharmacological agents targeting eosinophilic traits in uncontrolled eosinophilic asthma, especially monoclonal antibodies directed against interleukins (IL-5, IL-4, IL-13) or their receptors, have shown promising results. This review examines data on the rationale for such biological agents and assesses efficacy in T2-endotype COPD patients.
Project description:AbstractChronic obstructive pulmonary disease (COPD), characterized by persistent and not fully reversible airflow restrictions, is currently one of the most widespread chronic lung diseases in the world. The most common symptoms of COPD are cough, expectoration, and exertional dyspnea. Although various strategies have been developed during the last few decades, current medical treatment for COPD only focuses on the relief of symptoms, and the reversal of lung function deterioration and improvement in patient's quality of life are very limited. Consequently, development of novel effective therapeutic strategies for COPD is urgently needed. Stem cells were known to differentiate into a variety of cell types and used to regenerate lung parenchyma and airway structures. Stem cell therapy is a promising therapeutic strategy that has the potential to restore the lung function and improve the quality of life in patients with COPD. This review summarizes the current state of knowledge regarding the clinical research on the treatment of COPD with mesenchymal stem cells (MSCs) and aims to update the understanding of the role of MSCs in COPD treatment, which may be helpful for developing effective therapeutic strategies in clinical settings.