Project description:Childhood asthma is one condition within a family of allergic diseases, which includes allergic rhinitis, atopic dermatitis, and food allergy, among others. Omalizumab is an anti-IgE antibody therapy that was approved in Japan for children with asthma and added to the Japanese pediatric asthma guidelines in 2017. This review highlights the Japanese clinical perspectives in pediatric allergic asthma, and consideration for allergic comorbidities, and reflects on omalizumab clinical trials in progress to present comprehensive future opportunities.
Project description:Asthma is a heterogeneous disease, characterised by different phenotypes and endotypes. Precision medicine in asthma refers to the implementation of a targeted therapy for each individual child, based on the identification of treatable traits, including environmental, immunological and genetic factors. Severe asthma in children is associated with increased hospitalisation rates, a lower quality of life, increased healthcare costs and an increased mortality. In the era of new molecular biologics treatments, it is essential to improve deep phenotyping of children with severe asthma in order to deliver the most effective treatment to each individual child. In this review, we discuss the personalised approach to the assessment and management of severe asthma. We explore the indications and use of the currently licensed biologics, as well as the potential of other emerging treatments.
Project description:Substantial progress in recent years has dramatically increased our knowledge of the molecular basis of cancer, revealing new potential therapeutic targets and paving the way for effective personalised medicine for the treatment of many tumour types. However, pancreatic cancer has been lagging behind in this success and continues to be one of the most lethal solid malignancies. Its molecular heterogeneity and the unselected design of the majority of clinical trials to date can in part explain the reason for our failure to make a significant change in the survival outcomes for patients with pancreatic cancer. A changing paradigm in drug development is required to validate the new molecular taxonomy and to rapidly translate preclinical discovery into clinical trials. Here, we review the molecular subtyping of pancreatic cancer, the challenges in identifying effective treatment regimens according to defined low-prevalence molecular subgroups and we illustrate a new model of translational therapeutic development that was established in the U.K. (Precision-Panc) as a potentially effective solution to improve outcomes for patients with pancreatic cancer.
Project description:Severe asthma represents an important clinical unmet need despite the introduction of biologic agents. Although advanced omics technologies have aided researchers in identifying clinically relevant molecular pathways, there is a lack of an integrated omics approach in severe asthma particularly in terms of its evolution over time. The collaborative Korea-UK research project Precision Medicine Intervention in Severe Asthma (PRISM) was launched in 2020 with the aim of identifying molecular phenotypes of severe asthma by analysing multi-omics data encompassing genomics, epigenomics, transcriptomics, proteomics, metagenomics and metabolomics. PRISM is a prospective, observational, multicentre study involving patients with severe asthma attending severe asthma clinics in Korea and the UK. Data including patient demographics, inflammatory phenotype, medication, lung function and control status of asthma will be collected along with biological samples (blood, sputum, urine, nasal epithelial cells and exhaled breath condensate) for omics analyses. Follow-up evaluations will be performed at baseline, 1 month, 4-6 months and 10-12 months to assess the stability of phenotype and treatment responses for those patients who have newly begun biologic therapy. Standalone and integrated omics data will be generated from the patient samples at each visit, paired with clinical information. By analysing these data, we will identify the molecular pathways that drive lung function, asthma control status, acute exacerbations and the requirement for daily oral corticosteroids, and that are involved in the therapeutic response to biological therapy. PRISM will establish a large multi-omics dataset of severe asthma to identify potential key pathophysiological pathways of severe asthma.
Project description:Despite the availability of effective inhaled therapies, many patients with asthma have poor asthma control. Uncontrolled asthma presents a significant burden on the patient and society, and, for many, remains largely preventable. There are numerous reasons why a patient may remain uncontrolled despite access to therapies, including incorrect inhaler technique, poor adherence to treatment, oversight of triggers and suboptimal medical care. Shared decision-making, good patient-clinician communication, supported self-management, multidisciplinary patient education, new technology and risk stratification may all provide solutions to this major unmet need in asthma. Novel treatments such as biologics could benefit patients' lives, while the investigations into biomarkers, non-Type 2 asthma, treatable traits and disease modification give an exciting glimpse into the future of asthma care.
Project description:Purpose: The Precision Medicine Health Disparities Collaborative fosters collaboration between researchers with diverse backgrounds in precision medicine and health disparities research, to include training at the interface between genomics and health disparities. Understanding how perceptions about precision medicine differ by background may inform activities to better understand such differences. Methods: We conducted a cross-sectional survey of Center members and beyond. Data were collected on categories of educational background, current activities, and level of agreement with 20 statements related to genomics and health disparities. Respondents categorized their background and activities as social/behavioral, genetics, both, or neither. Fisher's exact test was used to assess levels of agreement in response to each statement. Statistically significant associations were further analyzed using ordinal logistic regression adjusting for age, self-identified race/ethnicity, and gender. Results: Of 130 respondents, 50 (38%) identified educational backgrounds and current activities as social-behavioral or genomic 55 (42%). Respondents differed by educational background on the statement Lifestyle and other life experiences influence how genes impact disease risk (p=0.0009). Respondents also differed by current activities on the statement Reducing disparities in access to health care will make precision medicine more effective (p=0.0008), and on Racism and discrimination make me concerned about how genetic test results will be used (p=0.0011). Conclusions: Respondents who differed on prior education and current activities, whether social behavioral science or human genomics, were associated with different perceptions regarding precision medicine and health disparities. These results identify potential barriers and opportunities to strengthen transdisciplinary collaboration.
Project description:Severe asthma accounts for almost half the cost associated with asthma. Severe asthma is driven by heterogeneous molecular mechanisms. Conventional clinical trial design often lacks the power and efficiency to target subgroups with specific pathobiological mechanisms. Furthermore, the validation and approval of new asthma therapies is a lengthy process. A large proportion of that time is taken by clinical trials to validate asthma interventions. The National Institutes of Health Precision Medicine in Severe and/or Exacerbation Prone Asthma (PrecISE) program was established with the goal of designing and executing a trial that uses adaptive design techniques to rapidly evaluate novel interventions in biomarker-defined subgroups of severe asthma, while seeking to refine these biomarker subgroups, and to identify early markers of response to therapy. The novel trial design is an adaptive platform trial conducted under a single master protocol that incorporates precision medicine components. Furthermore, it includes innovative applications of futility analysis, cross-over design with use of shared placebo groups, and early futility analysis to permit more rapid identification of effective interventions. The development and rationale behind the study design are described. The interventions chosen for the initial investigation and the criteria used to identify these interventions are enumerated. The biomarker-based adaptive design and analytic scheme are detailed as well as special considerations involved in the final trial design.
Project description:The treatment options currently available for narcolepsy are often unsatisfactory due to suboptimal efficacy, troublesome side effects, development of drug tolerance, and inconvenience. Our understanding of the neurobiology of narcolepsy has greatly improved over the last decade. This knowledge has not yet translated into additional therapeutic options for patients, but progress is being made. Some compounds, such as histaminergic H3 receptor antagonists, may prove useful in symptom control of narcolepsy. The prospect of finding a cure still seems distant, but hypocretin replacement therapy offers some promise. In this narrative review, we describe these developments and others which may yield more effective narcolepsy treatments in the future.
Project description:According to the current guidelines, severe asthma still represents a controversial topic in terms of definition and management. The introduction of novel biological therapies as a treatment option for severe asthmatic patients paved the way to a personalized approach, which aims at matching the appropriate therapy with the different asthma phenotypes. Traditional asthma phenotypes have been decomposing by an increasing number of asthma subclasses based on functional and physiopathological mechanisms. This is possible thanks to the development and application of different omics technologies. The new asthma classification patterns, particularly concerning severe asthma, include an increasing number of endotypes that have been identified using new omics technologies. The identification of endotypes provides new opportunities for the management of asthma symptoms, but this implies that biological therapies which target inflammatory mediators in the frame of specific patterns of inflammation should be developed. However, the pathway leading to a precision approach in asthma treatment is still at its beginning. The aim of this review is providing a synthetic overview of the current asthma management, with a particular focus on severe asthma, in the light of phenotype and endotype approach, and summarizing the current knowledge about "omics" science and their therapeutic relevance in the field of bronchial asthma.