A new biocompatible ternary Layered Double Hydroxide Adsorbent for ultrafast removal of anionic organic dyes.
Ontology highlight
ABSTRACT: It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106?m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2?min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32- groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6??g/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.
SUBMITTER: Rathee G
PROVIDER: S-EPMC6838081 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA