Unknown

Dataset Information

0

Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks.


ABSTRACT: Highly selective conversion of carbon dioxide (CO2) into valuable hydrocarbons is promising yet challenging in developing effective electrocatalysts. Herein, CuII/adeninato/carboxylato metal-biomolecule frameworks (CuII/ade-MOFs) are employed for efficient CO2 electro-conversion towards hydrocarbon generation. The cathodized CuII/ade-MOF nanosheets demonstrate excellent catalytic performance for CO2 conversion into valuable hydrocarbons with a total hydrocarbon faradaic efficiency (FE) of over 73%. Ethylene (C2H4) is produced with a maximum FE of 45% and a current density of 8.5 mA cm-2 at -1.4 V vs. RHE, while methane (CH4) is produced with a FE of 50% and current density of ?15 mA cm-2 at -1.6 V vs. RHE. These investigations reveal that the reconstruction of cathodized CuII/ade-MOFs and the formed Cu nanoparticles functionalized by nitrogen-containing ligands contribute to the excellent CO2 conversion performance. Furthermore, this work would provide valuable insights and opportunities for the rational design of Cu-based MOF catalysts for highly efficient conversion of CO2 towards hydrocarbon generation.

SUBMITTER: Yang F 

PROVIDER: S-EPMC6839807 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks.

Yang Fan F   Chen Aling A   Deng Pei Lin PL   Zhou Yinzheng Y   Shahid Zaman Z   Liu Hongfang H   Xia Bao Yu BY  

Chemical science 20190702 34


Highly selective conversion of carbon dioxide (CO<sub>2</sub>) into valuable hydrocarbons is promising yet challenging in developing effective electrocatalysts. Herein, Cu<sup>II</sup>/adeninato/carboxylato metal-biomolecule frameworks (Cu<sup>II</sup>/ade-MOFs) are employed for efficient CO<sub>2</sub> electro-conversion towards hydrocarbon generation. The cathodized Cu<sup>II</sup>/ade-MOF nanosheets demonstrate excellent catalytic performance for CO<sub>2</sub> conversion into valuable hydroc  ...[more]

Similar Datasets

| S-EPMC8517963 | biostudies-literature
| S-EPMC6983406 | biostudies-literature
| S-EPMC6981265 | biostudies-literature
| S-EPMC7046785 | biostudies-literature
| S-EPMC7794324 | biostudies-literature
| S-EPMC7075876 | biostudies-literature
| S-EPMC4471552 | biostudies-literature
| S-EPMC4083436 | biostudies-other
| S-EPMC4931497 | biostudies-literature
| S-EPMC8342611 | biostudies-literature