Unknown

Dataset Information

0

The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.


ABSTRACT: After synthesis of a short nascent RNA, RNA polymerase II (pol II) dissociates general transcription factors (GTFs; TFIIA, TFIIB, TBP, TFIIE, TFIIF, and TFIIH) and escapes the promoter, but many of the mechanistic details of this process remain unclear. Here we developed an in vitro transcription system from the yeast Saccharomyces cerevisiae that allows conversion of the preinitiation complex (PIC) to bona fide initially transcribing complex (ITC), elongation complex (EC), and reinitiation complex (EC+ITC). By biochemically isolating postinitiation complexes stalled at different template positions, we have determined the timing of promoter escape and the composition of protein complexes associated with different lengths of RNA. Almost all of the postinitiation complexes retained the GTFs when pol II was stalled at position +27 relative to the transcription start site, whereas most complexes had completed promoter escape when stalled at +49. This indicates that GTFs remain associated with pol II much longer than previously expected. Nevertheless, the long-persisting transcription complex containing RNA and all of the GTFs is unstable and is susceptible to extensive backtracking of pol II. Addition of the capping enzyme and/or Spt4/5 significantly increased the frequency of promoter escape as well as assembly of a follow-on PIC at the promoter for reinitiation. These data indicate that elongation factors play an important role in promoter escape and that ejection of TFIIB from the RNA exit tunnel of pol II by the growing nascent RNA is not sufficient to complete promoter escape.

SUBMITTER: Fujiwara R 

PROVIDER: S-EPMC6842614 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.

Fujiwara Rina R   Damodaren Nivedita N   Wilusz Jeremy E JE   Murakami Kenji K  

Proceedings of the National Academy of Sciences of the United States of America 20191007 45


After synthesis of a short nascent RNA, RNA polymerase II (pol II) dissociates general transcription factors (GTFs; TFIIA, TFIIB, TBP, TFIIE, TFIIF, and TFIIH) and escapes the promoter, but many of the mechanistic details of this process remain unclear. Here we developed an in vitro transcription system from the yeast <i>Saccharomyces cerevisiae</i> that allows conversion of the preinitiation complex (PIC) to bona fide initially transcribing complex (ITC), elongation complex (EC), and reinitiati  ...[more]

Similar Datasets

| S-EPMC4035452 | biostudies-literature
2012-12-20 | E-GEOD-36729 | biostudies-arrayexpress
| S-EPMC1219915 | biostudies-other
| S-EPMC5066617 | biostudies-literature
2012-12-20 | GSE36729 | GEO
| S-EPMC8420877 | biostudies-literature
| S-EPMC1171774 | biostudies-other
| S-EPMC4627066 | biostudies-literature
| S-EPMC3588593 | biostudies-literature
| S-EPMC8336890 | biostudies-literature