Unknown

Dataset Information

0

Synthesis and surface spectroscopy of ?-pinene isotopologues and their corresponding secondary organic material.


ABSTRACT: Atmospheric aerosol-cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as ?-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy with vibrational sum frequency generation (SFG) spectroscopy to probe the surface C-H oscillators in ?-pinene-derived secondary organic aerosol material (SOM) generated in an atmospheric flow tube reactor. Three ?-pinene isotopologues with methylene bridge, bridgehead methine, allylic, and vinyl deuteration were synthesized and their vapor phase SFG spectra were compared to that of unlabeled ?-pinene. Subsequent analysis of the SFG spectra of their corresponding SOM revealed that deuteration of the bridge methylene C-H oscillators present on the cyclobutane ring in ?-pinene leads to a considerable signal intensity decrease (ca. 30-40%), meriting speculation that the cyclobutane moiety remains largely intact within the surface bound species present in the SOM formed upon ?-pinene oxidation. These insights provide further clues as to the complexity of aerosol particle surfaces, and establish a framework for future investigations of the heterogeneous interactions between precursor terpenes and particle surfaces that lead to aerosol particle growth under dynamically changing conditions in the atmosphere.

SUBMITTER: Upshur MA 

PROVIDER: S-EPMC6844218 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis and surface spectroscopy of α-pinene isotopologues and their corresponding secondary organic material.

Upshur Mary Alice MA   Vega Marvin M MM   Bé Ariana Gray AG   Chase Hilary M HM   Zhang Yue Y   Tuladhar Aashish A   Chase Zizwe A ZA   Fu Li L   Ebben Carlena J CJ   Wang Zheming Z   Martin Scot T ST   Geiger Franz M FM   Thomson Regan J RJ  

Chemical science 20190731 36


Atmospheric aerosol-cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as α-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy w  ...[more]

Similar Datasets

| S-EPMC5502394 | biostudies-literature
| S-EPMC3657821 | biostudies-other
| S-EPMC4655512 | biostudies-literature
| S-EPMC5405578 | biostudies-literature
| S-EPMC4040618 | biostudies-literature
| S-EPMC9069682 | biostudies-literature
| S-EPMC3491512 | biostudies-literature
| S-EPMC9032102 | biostudies-literature
| S-EPMC6638570 | biostudies-literature
| S-EPMC7122035 | biostudies-literature