Unknown

Dataset Information

0

A 2D hyperspectral library of mineral reflectance, from 900 to 2500 nm.


ABSTRACT: Mineral identification using machine learning requires a significant amount of training data. We built a library of 2D hyperspectral images of minerals. The library contains reflectance images of 130 samples, of 76 distinct minerals, with more than 3.9 million data points. In order to produce this dataset, various well-characterized mineral samples were scanned, using a SPECIM Short Wave Infrared (SWIR) camera, which captures wavelengths from 900 to 2500?nm. Minerals were selected to represent all the mineral classes and the most common mineral occurrences. For each sample, the following data are provided: (a) At least one hyperspectral image of the sample, consisting of 256 wavelengths between 900 and 2500?nm. The raw data, the high dynamic range (HDR) image, and the masked HDR image are provided for each scan (each of them in HDF5 format). (b) A text file describing the sample, providing supplementary information for the subsequent analysis (c) RGB images (JPEG files) and automated 3D reconstructions (Stanford Triangle PLY files). These data help the user to visualize and understand specific sample characteristics. 2D hyperspectral images were produced for each mineral, which consist of many different spectra with high diversity. The scans feature similar spectra than the ones in other available spectral libraries. An artificial neural network was trained to demonstrate the high quality of the dataset. This spectral library is mainly aimed at training machine learning algorithms, such as neural networks, but can be also used as validation data for other types of classification algorithms.

SUBMITTER: Fasnacht L 

PROVIDER: S-EPMC6848079 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A 2D hyperspectral library of mineral reflectance, from 900 to 2500 nm.

Fasnacht Laurent L   Vogt Marie-Louise ML   Renard Philippe P   Brunner Philip P  

Scientific data 20191111 1


Mineral identification using machine learning requires a significant amount of training data. We built a library of 2D hyperspectral images of minerals. The library contains reflectance images of 130 samples, of 76 distinct minerals, with more than 3.9 million data points. In order to produce this dataset, various well-characterized mineral samples were scanned, using a SPECIM Short Wave Infrared (SWIR) camera, which captures wavelengths from 900 to 2500 nm. Minerals were selected to represent a  ...[more]

Similar Datasets

| S-EPMC4079120 | biostudies-literature
| S-EPMC5951593 | biostudies-literature
| S-EPMC6096386 | biostudies-literature
| S-EPMC10898133 | biostudies-literature
| S-EPMC4881289 | biostudies-literature
| S-EPMC5209864 | biostudies-literature
| S-EPMC6274177 | biostudies-literature
| S-EPMC8415606 | biostudies-literature
| S-EPMC5744967 | biostudies-literature
| S-EPMC8299078 | biostudies-literature