Identification of key regulators in prostate cancer from gene expression datasets of patients.
Ontology highlight
ABSTRACT: Identification of key regulators and regulatory pathways is an important step in the discovery of genes involved in cancer. Here, we propose a method to identify key regulators in prostate cancer (PCa) from a network constructed from gene expression datasets of PCa patients. Overexpressed genes were identified using BioXpress, having a mutational status according to COSMIC, followed by the construction of PCa Interactome network using the curated genes. The topological parameters of the network exhibited power law nature indicating hierarchical scale-free properties and five levels of organization. Highest degree hubs (k???65) were selected from the PCa network, traced, and 19 of them was identified as novel key regulators, as they participated at all network levels serving as backbone. Of the 19 hubs, some have been reported in literature to be associated with PCa and other cancers. Based on participation coefficient values most of these are connector or kinless hubs suggesting significant roles in modular linkage. The observation of non-monotonicity in the rich club formation suggested the importance of intermediate hubs in network integration, and they may play crucial roles in network stabilization. The network was self-organized as evident from fractal nature in topological parameters of it and lacked a central control mechanism.
SUBMITTER: Mangangcha IR
PROVIDER: S-EPMC6848149 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA