Unknown

Dataset Information

0

The Mechanosensitive Ion Channel Piezo1 Significantly Mediates In Vitro Ultrasonic Stimulation of Neurons.


ABSTRACT: Ultrasound brain stimulation is a promising modality for probing brain function and treating brain disease non-invasively and with high spatiotemporal resolution. However, the mechanism underlying its effects remains unclear. Here, we examine the role that the mouse piezo-type mechanosensitive ion channel component 1 (Piezo1) plays in mediating the in vitro effects of ultrasound in mouse primary cortical neurons and a neuronal cell line. We show that ultrasound alone could activate heterologous and endogenous Piezo1, initiating calcium influx and increased nuclear c-Fos expression in primary neurons but not when pre-treated with a Piezo1 inhibitor. We also found that ultrasound significantly increased the expression of the important proteins phospho-CaMKII, phospho-CREB, and c-Fos in a neuronal cell line, but Piezo1 knockdown significantly reduced this effect. Our findings demonstrate that the activity of mechanosensitive ion channels such as Piezo1 stimulated by ultrasound is an important contributor to its ability to stimulate cells in vitro.

SUBMITTER: Qiu Z 

PROVIDER: S-EPMC6849147 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Mechanosensitive Ion Channel Piezo1 Significantly Mediates In Vitro Ultrasonic Stimulation of Neurons.

Qiu Zhihai Z   Guo Jinghui J   Kala Shashwati S   Zhu Jiejun J   Xian Quanxiang Q   Qiu Weibao W   Li Guofeng G   Zhu Ting T   Meng Long L   Zhang Rui R   Chan Hsiao Chang HC   Zheng Hairong H   Sun Lei L  

iScience 20191023


Ultrasound brain stimulation is a promising modality for probing brain function and treating brain disease non-invasively and with high spatiotemporal resolution. However, the mechanism underlying its effects remains unclear. Here, we examine the role that the mouse piezo-type mechanosensitive ion channel component 1 (Piezo1) plays in mediating the in vitro effects of ultrasound in mouse primary cortical neurons and a neuronal cell line. We show that ultrasound alone could activate heterologous  ...[more]

Similar Datasets

| S-EPMC7870949 | biostudies-literature
| S-EPMC3169095 | biostudies-literature
| S-EPMC5505992 | biostudies-literature
| S-EPMC9822220 | biostudies-literature
| S-EPMC9711862 | biostudies-literature
| S-EPMC5784007 | biostudies-literature
| S-EPMC9926228 | biostudies-literature
| S-EPMC6584899 | biostudies-literature
| S-EPMC9563973 | biostudies-literature
| S-EPMC5928090 | biostudies-literature