The Differential Role of Central and Bridge Symptoms in Deactivating Psychopathological Networks.
Ontology highlight
ABSTRACT: The network model of psychopathology suggests that central and bridge symptoms represent promising treatment targets because they may accelerate the deactivation of the network of interactions between the symptoms of mental disorders. However, the evidence confirming this hypothesis is scarce. This study re-analyzed a convenience sample of 51 cross-sectional psychopathological networks published in previous studies addressing diverse mental disorders or clinically relevant problems. In order to address the hypothesis that central and bridge symptoms are valuable treatment targets, this study simulated five distinct attack conditions on the psychopathological networks by deactivating symptoms based on two characteristics of central symptoms (degree and strength), two characteristics of bridge symptoms (overlap and bridgeness), and at random. The differential impact of the characteristics of these symptoms was assessed in terms of the magnitude and the extent of the attack required to achieve a maximum impact on the number of components, average path length, and connectivity. Only moderate evidence was obtained to sustain the hypothesis that central and bridge symptoms constitute preferential treatment targets. The results suggest that the degree, strength, and bridgeness attack conditions are more effective than the random attack condition only in increasing the number of components of the psychopathological networks. The degree attack condition seemed to perform better than the strength, bridgeness, and overlap attack conditions. Overlapping symptoms evidenced limited impact on the psychopathological networks. The need to address the basic mechanisms underlying the structure and dynamics of psychopathological networks through the expansion of the current methodological framework and its consolidation in more robust theories is stressed.
SUBMITTER: Castro D
PROVIDER: S-EPMC6849493 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA