Unknown

Dataset Information

0

Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.


ABSTRACT: Traditionally, motion analysis in clinical laboratories using optoelectronic systems (MOCAP) is performed in acquisition volumes of limited size. Given the complexity and cost of MOCAP in larger volumes, action sports cameras (ASC) represent an alternative approach in which the cameras move along with the subject during the movement task. Thus, this study aims to compare ASC against a traditional MOCAP in the perspective of reconstructing walking and running movements in large spatial volumes, which extend over the common laboratory setup. The two systems, consisting of four cameras each, were closely mounted on a custom carrying structure endowed with wheels. Two different acquisition setups, namely steady and moving conditions, were taken into account. A devoted calibration procedure, using the same protocol for the two systems, enabled the reconstruction of surface markers, placed on voluntary subjects, during the two acquisition setups. The comparison was quantitatively expressed in terms of three-dimensional (3D) marker reconstruction and kinematic computation quality. The quality of the marker reconstruction quality was quantified by means of the mean absolute error (MAE) of inter-marker distance and two-stick angle. The kinematic computation quality was quantified by means of the measure of the knee angle reconstruction during walking and running trials. In order to evaluate the camera system and moving camera effects, we used a Wilcoxon rank sum test and a Kruskal Wallis test (post-hoc Tukey), respectively. The Spearman correlation coefficient (?) and the Wilcoxon rank sum test were applied to compare the kinematic data obtained by the two camera systems. We found small ASC MAE values (< 2.6mm and 1.3°), but they were significantly bigger than the MOCAP (< 0.7mm and 0.6°). However, for the human movement no significant differences were found between kinematic variables in walking and running acquisitions (p>0.05), and the motion patterns of the right-left knee angles between both systems were very similar (?>0.90, p<0.05). These results highlighted the promising results of a system that uses ASC based on the procedure of mobile cameras to follow the movement of the subject, allowing a less constrained movement in the direction in which the structure moves, compared to the traditional laboratory setup.

SUBMITTER: Bernardina GRD 

PROVIDER: S-EPMC6850531 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.

Bernardina Gustavo R D GRD   Monnet Tony T   Cerveri Pietro P   Silvatti Amanda P AP  

PloS one 20191112 11


Traditionally, motion analysis in clinical laboratories using optoelectronic systems (MOCAP) is performed in acquisition volumes of limited size. Given the complexity and cost of MOCAP in larger volumes, action sports cameras (ASC) represent an alternative approach in which the cameras move along with the subject during the movement task. Thus, this study aims to compare ASC against a traditional MOCAP in the perspective of reconstructing walking and running movements in large spatial volumes, w  ...[more]

Similar Datasets

| S-EPMC4981397 | biostudies-literature
| S-EPMC10687061 | biostudies-literature
| S-EPMC9446890 | biostudies-literature
| S-EPMC6719793 | biostudies-literature
| S-EPMC4259030 | biostudies-literature
| S-EPMC5806594 | biostudies-literature
| S-EPMC6394915 | biostudies-literature
| S-EPMC7697594 | biostudies-literature
| S-EPMC5633186 | biostudies-literature
| S-EPMC5476429 | biostudies-literature