Unknown

Dataset Information

0

Spatial Signal Detection Using Continuous Shrinkage Priors.


ABSTRACT: Motivated by the problem of detecting changes in two-dimensional X-ray diffraction data, we propose a Bayesian spatial model for sparse signal detection in image data. Our model places considerable mass near zero and has heavy tails to reflect the prior belief that the image signal is zero for most pixels and large for an important subset. We show that the spatial prior places mass on nearby locations simultaneously being zero, and also allows for nearby locations to simultaneously be large signals. The form of the prior also facilitates efficient computing for large images. We conduct a simulation study to evaluate the properties of the proposed prior and show that it outperforms other spatial models. We apply our method in the analysis of X-ray diffraction data from a two-dimensional area detector to detect changes in the pattern when the material is exposed to an electric field.

SUBMITTER: Jhuang AT 

PROVIDER: S-EPMC6853616 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatial Signal Detection Using Continuous Shrinkage Priors.

Jhuang An-Ting AT   Fuentes Montserrat M   Jones Jacob L JL   Esteves Giovanni G   Fancher Chris M CM   Furman Marschall M   Reich Brian J BJ  

Technometrics : a journal of statistics for the physical, chemical, and engineering sciences 20190322 4


Motivated by the problem of detecting changes in two-dimensional X-ray diffraction data, we propose a Bayesian spatial model for sparse signal detection in image data. Our model places considerable mass near zero and has heavy tails to reflect the prior belief that the image signal is zero for most pixels and large for an important subset. We show that the spatial prior places mass on nearby locations simultaneously being zero, and also allows for nearby locations to simultaneously be large sign  ...[more]

Similar Datasets

| S-EPMC6467998 | biostudies-literature
| S-EPMC5388190 | biostudies-literature
| S-EPMC7954239 | biostudies-literature
| S-EPMC7236769 | biostudies-literature
| S-EPMC5942601 | biostudies-literature
| S-EPMC3199931 | biostudies-literature
| S-EPMC4705859 | biostudies-literature
| S-EPMC3403878 | biostudies-other
| S-EPMC9098592 | biostudies-literature
| S-EPMC10870138 | biostudies-literature