Unknown

Dataset Information

0

Selective Inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis with Pulsed Electric Fields and Antibiotics.


ABSTRACT: Objective: Increasing numbers of multidrug-resistant bacteria make many antibiotics ineffective; therefore, new approaches to combat microbial infections are needed. In addition, antibiotics are not selective-they kill pathogenic organisms as well as organisms that could positively contribute to wound healing (bio flora). Approach: Here we report on selective inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis, potential pathogens involved in wound infections with pulsed electric fields (PEFs) and antibiotics (mix of penicillin, streptomycin, and nystatin). Results: Using a Taguchi experimental design in vitro, we found that, under similar electric field strengths, the pulse duration is the most important parameter for P. aeruginosa inactivation, followed by the number of pulses and pulse frequency. P. aeruginosa, a potential severe pathogen, is more sensitive than the less pathogenic S. epidermidis to PEF (alone or in combination with antibiotics). Applying 200 pulses with a duration of 60??s at 2.8?Hz, the minimum electric fields of 308.8?±?28.3 and 378.4?±?12.9?V/mm were required to inactive P. aeruginosa and S. epidermidis, respectively. Addition of antibiotics reduced the threshold for minimum electric fields required to inactivate the bacteria. Innovation: This study provides essential information, such as critical electric field parameters for bacteria inactivation, required for developing in vivo treatment and clinical protocols for using PEF for wound healing. Conclusion: A combination of PEFs with antibiotics reduces the electric field threshold required for bacteria disinfection. Such an approach simplifies devices required to disinfect large areas of infected wounds.

SUBMITTER: Rubin AE 

PROVIDER: S-EPMC6855282 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective Inactivation of <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus epidermidis</i> with Pulsed Electric Fields and Antibiotics.

Rubin Andrey Ethan AE   Usta Osman Berk OB   Schloss Rene R   Yarmush Martin M   Golberg Alexander A  

Advances in wound care 20190403 4


<b>Objective:</b> Increasing numbers of multidrug-resistant bacteria make many antibiotics ineffective; therefore, new approaches to combat microbial infections are needed. In addition, antibiotics are not selective-they kill pathogenic organisms as well as organisms that could positively contribute to wound healing (bio flora). <b>Approach:</b> Here we report on selective inactivation of <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus epidermidis</i>, potential pathogens involved in wound i  ...[more]

Similar Datasets

| S-EPMC9769884 | biostudies-literature
| S-EPMC8260897 | biostudies-literature
2006-02-01 | GSE4106 | GEO
| S-EPMC4735277 | biostudies-literature
2024-03-06 | GSE248601 | GEO
2024-03-06 | GSE248600 | GEO
2024-03-06 | GSE248599 | GEO
| S-EPMC5095667 | biostudies-literature
2023-11-30 | GSE214387 | GEO
2022-03-31 | GSE195506 | GEO